
AD-A270 549

Multilist Scheduling:
A New Parallel Programming Model DTIC

I-Chen Wu ELECTE
OT141993

July 30, 1993 1
CMU-CS-93-184

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:I Tbis documcrul has been appzo Wv R H.T. Kung, ChairSorpublic :eic.~a-= .d scte; its
,fo., publc an iPeter Steenkiste

David O'Hallaron
Gerald Thompson, GSIA

David Farber, University of Pennsylvania

Copyright © 1993 I-Chen Wu

This research was sponsored by the Advanced Research Projects Agency. Information Science and Technology
Office, under the tide Research on Parallel Computing, issued by ARPA/CMO under Contract MDA972-90-
C-0035, ARPA Order No. 7330.

The views and conclusions contained in this document are those of the author and should not be interprctcd as
representing the official policies, either expressed or implied, of ARPA or the U.S. Government.

93 10 8 193-24003

4b

Keywords: parallel programming, task scheduling, multilist scheduling, dynamic load
balancing, scheduling list, network-based multicomputer, divide-and-corwuer, best-first search.
network simulation, alpha-beta search, quicksort, factoring, set covering, range selection.

• egie School of Computer Science

DOCTORAL THESIS [V= QUALVTY INSPECTED 2

in the field of Accecion For
Computer Science!Nrs

Multilist Scheduling: /."J"cm"m
A New Parallel Programming Model B y

I-CHEN WU Di Aritt

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy "

ACCEPTED:

TftIS COMMrTTE C3AIR '' DATE

DEPARTMENT HEAD DATr

APPROVED:

UDEAN- DATE

Abstract

Parallel programming requires task scheduling to optimize performance; this primarily involves
balancing the load over the processors. In many cases, it is critical to perform task scheduling
at runtiz-,m,. For example, (1) in many parallel applications the task load cannot be accurately
predicted a priori; (2) in a network-based multicomputer the computational power of each pro-
cessor may not remain constant. In order to support dynamic task scheduling, the programmer
usually needs to design and implement a complex set of scheduling routines, e.g., routines
for maintaining task lists and handling interprocessor communication for load balancing. Un-
fortunately, it is very difficult and time-consuming to write and debug all of these scheduling
routines.

This thesis proposes a new approach which can greatly reduce the effort of developing
efficient dynamic task scheduling routines. In our new approach, we decompose task scheduling
into two parts - the specification of scheduling policies and the implementation of supportive
scheduling operations - and then hide the latter from the programmer. We call this approach
multilist scheduling, because it is based on a uniform scheduling model involving the use of
multiple scheduling lists.

This thesis analyzes three main features of the new multilist scheduling model: ease of use,
generality, and efficiency.

" Ease of use: Programmers only need to specify scheduling policies, not the details of
supportive scheduling routines. Typically, this involves writing only tens of lines of C
code, as opposed to thousands of lines of code for the supportive scheduling routines.

" Generality: We show that this model results in no loss of generality. We also illustrate the
generality of the model by rendering several scheduling algorithms in the framework of
our model, including the scheduling algorithms for parallel divide-and-conquer (D&C)
and best-first search (BFS).

" Efficiency: We propose some efficient techniques for implementing scheduling lists, and
also show that our general approach incurs no significant performance overhead, at least
for the parallel D&C and BFS scheduling algorithms. In addition, we also demonstrate
good performance results for some applications that are based on parallel D&C and BFS,
such as the set covering problem.

Traditionally, it has been difficult to efficiently support both parallel D&C and BFS in a
uniform framework. We believe that our system is the first system that do so.

Multilist scheduling is the first model which can hide the details of dynamic task scheduling
routines while supporting general task scheduling. We expect that this model will have a
significant impact on parallel programming, especially in the domain of multicomputers.

Acknowledgment

I would like to deeply thank all of those who helped me with this thesis. My advisor, H.T.
Kung, gave me excellent advice and vision which led this thesis towards providing a general
parallel programming system for dynamic task scheduling. My committee members, II.T.
Kung, Peter Steenkiste, Dave O'Hallaron, Gerald Thompson. and David Farber, also offered
valuable comments to improve the quality of the thesis. Especially, H.T. Kung, Peter Steenkiste,
and Dave O'Hallaron also gave many useful comments in the early stages. Gerald Thompson
generously provided his set covering program as an example application of my system. Hiroshi
Nishikawa gave some valuable discussions about his language Aroma and its applications,
which motivated the study of the scheduling algorithms in Sections 3.1.3 and 3.2.4. Joe
Tebelskis carefully and patiently read several drafts of the thesis and helped me to improve the
readability of this presentation. Susan Hinrichs, Bruce Siegell, and Jay Sipelstein also helped
improve the presentation of this thesis. Peter Steenkiste, Bruce Siegell, Hiroshi Nishikawa,
Michael Gillinov, and Ming-Jen Chan have helped me on some questions about operating
systems and the Nectar system environment. In addition, during the early period of my Ph.D
program when I was working on the Apply compiler, Jon Webb gave me some useful advice
which was indirectly helpful for my thesis work.

I am grateful to many friends for their friendship and encouragement. Joe Tebelskis, in
particular, an almost-6-year officemate of mine, has always generously provided help whenever
I needed it and encouraged me whenever I had a difficult time. Never will I forget his genuine
and enjoyable friendship.

I am indebted to my family for their support. My wife, Shwu-Huey, shared in my hard work
with love, understanding, and encouragement. My son, Tony, and my daughter, Ariel, brought
joy and happiness to me. Finally, I would like to dedicate this thesis to my parents, Wen-Ching
and Kang-Bau, for their unconditional support and care in my life.

III..

(To my parents, Wen-Ching and Kang-Bow)

iv

Contents

Abstract

Acknowledgements iii

1 Introduction 1

1.1 Traditional Approach 2

1.2 Our New Approach 4

1.3 Overview of This Thesis 5

2 Multilist Scheduling 7

2.1 Computational Model for Task Scheduling 7

2.2 General Approach 10

2.3 Multilist Scheduling Model 15

2.4 Discussion 17

3 Examples of Scheduling Algorithms 19

3.1 Main Examples 19

3.1.1 Parallel Best-First Search 20

3.1.2 Parallel Divide-and-Conquer 23

3.1.3 Parallel Synchronous Network Simulation 27

3.2 Other Examples of Scheduling Algorithms 28

3.2.1 Parallel Loops with the Factoring Technique29

3.2.2 Parallel Alpha-Beta Search with Principle Variation Splitting Algorithm 30

3.2.3 Parallel Quicksort Algorithm 32

3.2.4 Parallel Asynchronous Network Simulation 34

3.3 Discussion ... 35

V

4 Implementation Issues 37

4.1 Maintaining Virtual Lists 37

4. 1. 1 Standard Protocol 37

4.1.2 Global Protocol 40

4.2 Maintaining Physical Lists 47

4.2.1 Data Structure of Priority Queue 49

4.3 Discussion 53

5 Selected Theoretical Topics 57

5.1 Communication Complexity for Parallel Divide-and-Conquer 57

5.1.1 Summary of Results 58

5.1.2 A Scheduling Algorithm and Upper Bounds 64

5.1.3 A Simplified Version of Theorem 5.1 67

5.1.4 Proof of Theorem 5.1 72

5.2 Parallel Range Selection 80

5.2.1 Summary of Results 81

5.2.2 Key Value Distribution Lists 84

5.2.3 Combining 86

5.2.4 Time Complexity 98

5.2.5 Discussion 99

6 Experimental Results 101

6.1 Environment .. 101

6.2 Fibonacci 104

6.3 Set Covering .. 106

6.3.1 PDC 108

6.3.2 PBFS II

6.3.3 Global Load Balancer on CABs 114

6.3.4 Parallel Hybrid Search15

6.4 Summary .. 115

7 Conclusions 117

7.1 Summary ... 117

7.2 Contributions 119

vi

7.3 Future W ork 120

A User Interface 121

A. 1 Interface Definitions 121

A. 1.1 Initializing the Multilist Scheduling System 121

A. 1.2 Physical Lists 122

A. 1.3 Merging Physical Lists into Virtual Lists 123

A. 1.4 Priority Assignment 125

A.2 Examples 125

Bibliography 127

vii

viii

List of Figures

1.1 Three parallel programming layers in the traditional approach 3

1.2 Four parallel programming layers in the traditional approach 4

2.1 Tasks and messages 7

2.2 Computational model for task scheduling 9

2.3 Partitioning an SNS graph over four processors I1

2.4 p-list model 12

2.5 p2 -list model ... 14

2.6 Multilist scheduling model 16

3.1 Scheduling algorithm for PBFS-GPQ: (a) using one GPQ and (b) using our

model 21

3.2 Scheduling pattern for PDC-WK 25

3.3 PV-subtrees .. .3 I

4.1 An example of the standard protocol (PL I is merged to V1 L.2) 38

4.2 Omitting reoorts based on given priority ranges 39

4.3 indivisible ranges for parallel ANS (no report when the phase index is still the
same) 39

4.4 An example for the GLB hierarchy 43

4.5 A 2-3 tree 50

4.6 A 2-3 tree, showing load variable values 5 I

4.7 Updating load variables 53

5.1 At most d frontier nodes at each level on a processor (d = 3) 65

5.2 Growing the current tree to a (N, h, d)-tree : 69

5.3 Two areas in the constructed tree 70

5.4 Tree construction procedure 74

ix

5.5 Three areas in the constructed tree 74

5.6 Around the time when condition C I becomes true 75

5.7 Expanded cross nodes corresponding to PA-independent subtrees....... 77

5.8 In stage 1, any non-cross node's ancestors in area 2 must have been generated
on the same processor. 78

5.9 (a) A key value distribution in the processor subtree F,, showing a KVD list
Ai (containing five items) which is 2-deviant, given M = 9. (b) Simplified
diagram to show the possible range of N,(r), given the 2-deviant KVD list in (a). 85

5.10 A key value distribution in the processor subtree 1'i, showing the 2-deviant KVD
list A\ (containing five items) which is generated by the Create Algorithm, given
M = 9 .. 88

5.11 An example of the merge operation from At and A, into Aj, given M = 9. . . 91

5.12 An example of examining property V2 93

5.13 An example of removing items 94

5.14 (a) Removing those items with priorities lower than M/p(= 9/4). (b) Increas-
ing the key values less than 7riI to Til I 96

6.1 The Nectar system 102

6.2 GLB trees for (a) one, (b) two, (c) four, and (d) eight processors 103

6.3 The computation tree for F(3)104

6.4 Speedups for Problems 1-4 with PDC 109

6.5 Speedups for Problems 1-4 with PBFS 112

6.6 Efficiencies with PDC (installing GLB on CABs) 113

6.7 Efficiencies with PBFS (installing GLB on CABs) 13

6.8 Performance results for parallel hybrid search 114

A. I The code for the PBFS-GPQ scheduling algorithm 126

A.2 The code for the PDC-WK scheduling algorithm 126

x

List of Tables

6.1 The total times (in seconds) and simple speedups/efficiencies for parallel Fi-
bonacci 105

6.2 Measurea performance results for the PDC scheduling algorithm (T: Time in
seconds, S: speedup, and E: efficiency) 109

6.3 Averaged scheduling overhead in seconds when using the PDC scheduling
algorithm 109

6.4 Number of sends/receive pairs for the PDC scheduling algorithm 110

6.5 Average idle times (in seconds) when using the PDC scheduling algorithm. . . III

6.6 Measured performance results for the PBFS scheduling algorithm (T: Time in
seconds, S: speedup, and E: efficiency) Ill

6.7 Measured Number of sends/receives when using the PBFS scheduling algorithm. 112

xi

xii

Chapter 1

Introduction

Parallel programming requires task scheduling to optimize performance; this primarily involves

balancing the load over the processors. Task scheduling can be classified into static task

scheduling or dynamic taskscheduling, according to the time when task scheduling is performed.

Static task scheduling is typically done by distributing the load of tasks evenly (or roughly

evenly) over processors at the beginning of the job. This can be done with the help of compilers

[39, 80, 100]. However, in many cases, it is critical to perform task scheduling at runtime:

e In many parallel applications, the task load cannot be accurately predicted a priori. For

example, in mathematical optimization problems [35, 761, which usually involve large-

scale tree searching, it is impossible to make useful a priori estimates on the size of the

search tree or the sizes of its nodes.

* In network-based multicomputers', the computational power of each processor may

not remain constant. For example, in a network-based multicomputer, someone may

unexpectedly come to work on one of the participating workstations, slowing it down.

Static task scheduling (or static load balancing) cannot balance the load well in such a

situation.

'A network-based multicomputer is a number of computers (e.g., workstations), connected via a network.

cooperating on the same job. As networks have grown more efficient, network-based multicomputers (611 have

recently emerged as a new and attractive type of parallel system due to resource sharing which results in flexibility

and low cost. We expect more and more applications to run on such multicomputers.

We will first describe the traditional approach to dynamic task scheduling (or dynamic load

balancing) and point out the problem of the approach in Section 1.1. Then, we will briefly

describe our new approach in Section 1.2. Finally, we will give an overview of this thesis in

Section 1.3.

1.1 Traditional Approach

The traditional approach to dynamic scheduling is ad hoc: for each application or each class

of applications, a task scheduling algorithm is implemented from scratch. For example:

" For a large class of applications which can be solved without concern for the scheduling

sequence of executable tasks, many researchers [31, 67, 89, 107] have proposed various

load balancing techniques to efficiently parallelize the applications.

" For tree search problems (e.g., divide-and-conquer (D&C) problems) which can be

efficiently solved by using depth-first search (DFS), many researchers [32, 33, 34. 44,

82, 104, 105, 1081 have proposed scheduling algorithms which can reduce the amount of

communication while balancing the load.

" For tree search problems which can be efficiently solved by using best-first search (BFS),

sev, 1 researchers [1, 5, 46, 60, 76, 81, 101, 1081 have proposed ways to parallelize

BFS.

"* For game tree search problems which can be solved by using alpha-beta (a-. 3) search,

researchers have proposed many different kinds of parallel scheduling algorithms, e.g.,

the mandatory work first algorithm [41, the principle variation splitting (PVS) algorithm

[21, 69], and other variations [11, 45, 87].

"* For scientific applications with parallel loops, researchers have proposed efficient runtime

scheduling algorithms using the following techniques: factoring scheduling [48], guided

self-scheduling [781, and phase-based scheduling [701.

To facilitate comparison with our new approach, we present the traditional approach in"

terms of programming layers, as illustrated in Figure 1.1. We sepaw.'t application programs and

2

BFS D&C a-1

Parallel Loops

... Application Layer

... Scheduling Layer

Network Interface (e.g., PVM) Network Interface Layer

Figure 1.1: Three parallel programming layers in the traditional approach.

scheduling programs into two different programming layers, the application layer (high level)

and the scheduling layer (low level), respectively. The application layer is for applications;

the scheduling layer is for parallel scheduling algorithms, with each algorithm supporting

one application or a class of applications. Programmers in the application layer are called

application programmers (they are not expected to design parallel scheduling algorithms);

programmers in the scheduling layer are called scheduling programmers. In addition to the

above two layers, the network interface layer provides a general mechanism for network

communication and supports an interface for the scheduling layer to access the network system.

For example, PVM [37], Express [49], iPSC primitives[50], Nectarine [95], and socket packages

for TCP/IP [65] would reside in the network interface layer. Programmers in this layer are called

system designers. Note that in the rest of this thesis when we refer to a generic "programmer",

we will mean the scheduling pi, gýnmmer.

The traditional approach has a serious problem: it requires a large effort to implement any of

these dynamic scheduling algorithms. In order to implement a dynamic scheduling algorithm,

the programmer usually needs to write the details of supportive scheduling routines, e.g.

those for maintaining task lists and handling interprocessor communication for load balancing.

Unfortunately, it is very difficult and time-consuming to write and to debug these supportive

routines. (Note that concurrent debugging, in particular, is clearly much more difficult than

sequential debugging, due to nondeterm>'- :t-a) For example, when we were parallelizing a

solid modeling program (called Noodles [23]) based on a simple load balancing strategy [311,

it took us months to write thousands of lines of load-balancing code in C. From this, we

understand that it is extremely important to provide a general scheduling system which can

hide these supportive scheduling operations from the programmer such that programmers only

3

need to focus on the specification of the scheduling policies.

1.2 Our New Approach

Recently, researchers have begun to notice that these supportive scheduling operations are very

similar among many scheduling algorithms. In response, some systems have begun to provide

greater generality with high-level interfaces. For tree search problems, Wu [1031 proposed
a parallel programming system, called dual-priority task scheduling (an early version of our

present system), which supports flexible scheduling algorithms for most tree search problems.

In addition, Nishikawa and Steenkiste [70, 711 proposed the Aroma language (mainly based

on phase-scheduling) which offers a range of scheduling algorithms to cover many scientific

applications. Still, none of the above have been claimed to be general.

BFS D&C a-03
Parallel Loops

... Application LayerS..
F1 F I�Scheduling LayerS.... I I I I I "S h u i.n.g....ay.. ..r.....

Multilist Scheduling Sc he duli ng S uppo rt L ayer
S..... I o , I

Network Interface (e.g., PVM) Ne twor k I nte rfa ce L ayer

Figure 1.2: Four parallel programming layers in the traditional approach.

In this thesis, we will propose a general approach which can greatly reduce the effort of

developing dynamic scheduling routines. In our new approach, we decompose task scheduling

into two parts - the specification of scheduling policies and the implementation of supportive

scheduling operations - and then hide the latter from the programmer. We call this approach

multilist scheduling 2 , because it is based on a uniform scheduling model involving the use of
21n the area of compiler design, list scheduling [2, 591 is a common technique in which a heuristic function is

used to indicate the execution sequence of tasks (or instructions) in a scheduling list. Our system is similar to list

scheduling in this sense. However, the list scheduling technique used by compilers usually sorts the scheduling
list before scheduling tasks from it, while our multilist scheduling system inserts tasks into or deletes tasks from

scheduling lists at runtime.

4

multiple scheduling lists. In the multilist scheduling model, programmers only need to specify

scheduling policies based on scheduling lists. The supportive routines for the implementation of

scheduling lists are moved into the system and hidden from the programmer. These supportive

routines from the scheduling layer form a new layer called the scheduling support layer as

shown in Figure 1.2. In the past, the scheduling programmers had to write the supportive

routines; now, this will be the responsibility of the system designer.

1.3 Overview of This Thesis

Chapter 2 will describe our multilist scheduling model in greater detail and will also show the

generality of the model. Chapter 3 will illustrate the generality and simplicity of the model

by implementing several interesting scheduling algorithms, such as parallel D&C and BFS,

based on the model. Chapter 4 will describe the current implementation and wiii show that

our general approach incurs no significant performance overhead at least in these two cases.

Chapter 5 will present some theoretical results which we have obtained while developing our

model. Since these theoretical results have no strong relation to the rest of this thesis, the reader

may skip this chapter without loss of continuity. Chapter 6 will demonstrate good performance

results for some applications that are based on the parallel D&C and the parallel BFS scheduling

algorithms, such as the set covering problem. Chapter 7 will give our conclusions. Appendix

A will define the user interface for our multilist scheduling model.

5

6

Chapter 2

Multilist Scheduling

In Section 2.1, we will define a computational model for task scheduling. In Section 2.2, we

will give a general introduction to the multilist scheduling approach. The model based on this

new approach will be formally defined in Section 2.3. Finally, we will discuss this model in

Section 2.4.

2.1 Computational Model for Task Scheduling

Stask• TL iT.

Message M, 'I --

Figure 2.1: Tasks and messages.
7T

The computational model for task scheduling has two basic elements: tasks and messages.

Tasks are the basic program units that run concurrently; a message is a piece of data sent from

one task to another task. Figure 2.1 illustrates an example. The computational model obeys

the following rules.

1. The system creates a task after all the expected messages describing the task have been

received. These messages will be subsequently consumed.

2. After all the expected messages have been received, a task ignores further messages.

3. A processor completes a task before switching to another task.

4. A task can generate zero or more messages. Note that for simplicity creating messages

only happens at the end of the task's computation.

5. A task frees itself immediately before it is terminated.

The third rule implies that the entire computation of a task is executed sequentially on

a processor, and that tasks cannot preempt each other. Therefore, if parallel computation is

desired within a task, then the task should explicitly be decomposed into parallel subtasks. It

also follows that this model cannot handle applications that depends on preemption, such as

certain real-time applications.

Consider an example of parallel programming which requires the following primitives: (I)

fork a thread, (2) send data to a thread, and (3) receive data in a thread. We will show that these

primitives can be represented in the above computational model as follows.

Fork a thread. Create a message which subsequently creates a task corresponding to the

thread. For example, in Figure 2.1, task T3 representing some thread can fork another

thread by creating a message, say A4I4, then, message MI4 will in turn create task 1,

corresponding to the new thread.

Send data to a thread. Create a corresponding message (the delivery and the destination are

part of the message). For example, in Figure 2. 1, task 72 sends a message M,2 to a thread

represented by task T3.

8

Receive data in a thread. Create a message %, (containing the content of the whole thread)

for continuation of the thread; terminate the current task (corresponding to the current

thread); when a send message corresponding to the receive exists, create a new task from

the send message and A4 (i.e., just resume the execution of the original thread). For

example, in Figure 2.1, when task T, representing some thread wants to receive message

A42 , the task will create message ," I for continuation of the thread. Then, when message

.A12 is created, both .AI1 and .A, will create a new task T3 which resumes the execution

of the original thread.

In the rest of this thesis, we will assume that a thread can receive messages at any time

during its execution, but that a task can receive messages only at the beginning of its execution.

So, each segment of a thread between the receipt of messages corresponds to a complete task.

In order to implement task scheduling, the programmer needs to write a procedure, called

the task scheduler. Whenever a processor is idle, the system applies the task scheduler in order

to schedule a new task, based on the state of the whole system (tasks, messages, and processors).

If more than one processor tries to schedule tasks simultaneously, only one processor can apply

the scheduling operation at a time. In other words, this is an atomic operation.

Messages

Tasks

Task Scheduler

+ + 4 requests

send (create) more messages

Figure 2.2: Computational model for task scheduling.

This model for task scheduling will be called the standard scheduling model. It is illustrated

in Figure 2.2 with p processors, denoted by P1, ..., P,. In accordance with the definitions of

scheduling programmer and application programmer in Section 1. 1, the scheduling programmer

is responsible for the implementation of the task scheduler, and the application programmer is

9

responsible for the implementation of tasks and messages. In the rest of this chapter, we will

develop the model for the design of the task scheduler.

2.2 General Approach

On a single processor, a task scheduling sequence is basically a list of tasks ordered according

to their priorities, the preferences of scheduling these tasks. We call such a list a scheduling

list. In a parallel system, extending the above paradigm, task scheduling requires the use of

multiple scheduling lists and multiple priority assignments per task. We will illustrate this

necessity with the following example.

Synchronous Network Simulation

Network simulation is a common computational paradigm, in which data dependencies can

be described by a network or graph. Examples of network simulation computations include

finite element simulation such as fluid simulation [531; differential equation solving such as

weather prediction [24, 25]; digital circuit simulation such as gate-level simulation [201; and

digital signal processing such as sonar detection [801.

A network simulation computation can be represented by a directed graph, in which a node

represents a thread and an edge represents the data dependency between threads. If there is an

edge from node A to node B, node A needs to send data to node B at the end of each phase. We

will call this edge an out-edge for A and an in-edge for B.

A synchronous network simulation (SNS) computation is a network simulation computation

in which all nodes need to be synchronized in each phase. (Note that an asynchronous

network simulation computation is a network simulation computation without the constraint

of synchronization; we will discuss this case in Section 3.2.4.) For SNS, each node will be

executed once during each phase. Then, each node will send data to neighboring nodes via the

out-edges in the graph. The SNS computation can advance to the next stage when all the nodes

have received data from their neighboring nodes via in-edges. (Froin the task definition in the

previous section, each node during one phase can be considered to be a task.)

10

The traditional approach for SNS is to partition the SNS graph over processors by hand [62,

Section 4] or by compilers [801. However, if the grain size of each node (in a phase) carnot

be known a priori, it becomes critical to partition the graph over processors at runtime. Here,

we propose a dynamic load balancing strategy based on the criterion of keeping the number of

cross edges as small as possible. A cross edge is an edge between two nodes, which reside on

different processors.

-b- Data dependency

Q Node (thread) P3

p1

p2

Figure 2.3: Partitioning an SNS graph over four processors.

Let us consider an SNS computation, illustrated in Figure 2.3, at some moment of a phase.

Its SNS graph is partitioned over four processors, P1, P2, P3, and P4 (the partitioning is indicated

by the thick lines in this figure and nodes are represented by circles). For the node marked with
"x", each processor has a different preference to schedule this node: Processor P, has a very

high preference to schedule the node because it is always good to schedule local nodes before

requesting nodes from other processors. Processor P4 has a very low preference to schedule

the node because moving the task to P4 will incur the expense of many more cross edges.

Similarly, processors P, and P3 have in-between preferences of scheduling the node. One can

also apply the same strategy to other nodes to find the relative priority of scheduling any task

on any processor. This shows that each processor can have its own perspective of the preferred

task scheduling sequence. This suggests that a general scheduling model should at least allow

each processor to express its own perspective of the task scheduling sequence.

p-List Model

li

It) IIE 2 It?,

S2 3 q 3

T 5T3 5 T3 4

T4 6 T4 6 1 T 7

Py P2 P

Figure 2.4: p-list model.

In a parallel system with p processors (denoted by P, ... , Pp), since each processor may have

its own perspec:ive of the task scheduling sequence, we assign, in our approach, a scheduling

list to each processor. Since there are p scheduling lists in all, we call the model the p-list

model. In this model, the programmer only needs to assign to a task p priorities. (y, =2.

,rTp), with each ri representing the priority of the task in the scheduling list of P,. Figure 2.4

illustrates the p-list model with five tasks denoted by T1, T2, T3, T4, and T5. In this figure, the

small-font number in the right hand side of each task of each list represents the priority' of

the task in the list. For example, for task T1, its 7rI = 2, 72 = 7, and rp = 7. When a task

is created, it is simultaneously inserted into each Pi's list according to the task's priority

(Note that if a task is absolutely not scheduled by some processor, say P,, then we can set the

priority 7ri of the task to an undefined value and do not insert the task into the corresponding

scheduling list.) If some processor schedules a task (with the highest priority) from the head

of its scheduling list for execution, say processor P2 schedules task 7j, all the instances of T,

in other scheduling lists will also be removed. If the priorities of a task are changed at runtime,

the location of the task in each list must be changed accordingly.

A very important result for the p-list model is that the use of p scheduling lists is sufficient for

specifying all parallel scheduling policies, i.e., the p-list model results in no loss of generality

with respect to the standard scheduling model (as described in Section 2. 1).

Assertion The p-list model results in no loss of generality with respect to the

standard scheduling model.

'Note that some systems use a small number to represent a high priority but some other systems use a large

number. For consistency, we will always use a large number to represent a high priority in this thesis.

12

Justification. This follows from the fact that we can recast any scheduling al-

gorithm A in terms of our p-list model, as follows. Consider how scheduling is

performed when a processor tries to schedule a task. If we use algorithm A (explic-

itly coded), the schedule is determined by executing the code; while if we use the

p-list model, the schedule is determined by relative task priorities, which must be

settled before task scheduling time. Since priorities may be changed dynamically

in the p-list model, we only n""d to ensure that the highest priority in each list is

always assigned to the "correct" tasK. To be more precise, assume that each task

T7 is the one to be scheduled on processor P, by algorithm A if processor P, is the

next processor to schedule a task. In the p-list model, the programmer can assign

priorities to tasks in such a way that task "T has the highest priority in Pi's list

(more precisely, the ith priority of T7 is the highest among the ith priorities of all

the tasks). Thus, whichever processor requests a task next, the p-list system will

schedule the same task as algorithm A. Thus the priority assignment scheme in

the p-list model realizes algorithm A.

The above assertion shows that the p-list model is well suited to the specification of

scheduling policies. However, we do not want to naively implement each scheduling list on its

corresponding processor, because such a straightforward implementation would be inefficient

on a distributed-memory system, due to the following two communication problems: First,

whenever a processor inserts or deletes a task, the processor would have to inform every other

processor. This will result in a large amount of communication. Second, processors may

compete with each other and attempt to schedule the same task simultaneously.

p'-List Model

In order to solve these problems of excessive communication and scheduling competition

(processor race conditions), we want to avoid inserting/deleting a task across processors while

keeping the notion of using p scheduling lists. We will modify the p-list model as illustrated

in Figure 2.5. Let the original scheduling list of each processor Pi become a virtual list (VL),

denoted by VLj, and let each Pi store p small physical lists (PLs), denoted by PL,1 , PL,,,

•.., PLp. Each individual PLj is physically maintained by processor P, while each ,L, is

conceptually constructed from tasks appearing in PL1 I, PL 2i, ... , PLp,. Since there are p-2

PLs in the entire system, we call the model the p2-list model. In a VL, the tasks are merged on

13

Memory Memory Memory
PL.1 PL1 2 ... PL1p FL2 1 PL2 2 .PL 2 p FL1 PL 2 ...PLpp

2
T. T4

T2 87 Tj 7 4 4 T4 9

AT, T T -5 3

T5 I T T4
" "1 22 T2 3 T2-

Figure 2.5: p2-list model.

the basis of the priorities assigned to them on the corresponding PLs. When creating a task,

the programmer assigns p priorities to the task and designates a processor, say P,, where the

task will be stored. (Note that in many cases the designated processor is set to the one creating

the task so that the insertion operation requires no communication.) Subsequently, the system

will insert the task into each PL23 according to the jth priority of the task. Whenever some

processor wants to schedule this task, say processor P2 schedules T1 in Figure 2.5, we can

delete task T1 from each PL 11. Although the insertion and deletion operation only updates the
PLs on P, implicitly each VL is also changed accordingly.

There are two main advantages to the p2-list model. First, if several processors try to

simultaneously schedule a task which is stored in the PLs on some processor P,, we can

resolvethis by letting P, determine which processor can schedule the task. Second, in an

actual implementation of the model, each processor P, only needs to maintain the head of VL1,

because this is the place from which processor P, schedules tasks. (Chapter 4 will discuss this

-issue in greater detail.) Since tasks in the tail of VL, are not interesting to P1, we may eliminate

the communication that would be required to maintain the tail of VL1 .

14

We can further improve the modified model in the following two situations: The first

situation is that if some PLs on the same processor are identical, we only need to use one PL

to represent these PLs. For example, in Figure 2.5, we can use one PL to stand for PL1 2 and

PL p,, if they are always the same.

The second situation is that if certain priorities of each task are monotonically related, then

the corresponding PLs can be reduced to a single PL, supplemented with a set of monotonic

functions for deriving the other PL's. For example, if the priority for each task in one PL

(denoted by PL') is a monotonic function f of its priority in another PL (denoted by P L), then

the system can perform operations on PL' based on the data structure of PL and the priority

translation function f, as follows. (1) We only need to insert tasks into and delete tasks from

PL, not PL'. (2) When some processor tries to schedule a task from PL', the system can

schedule the task from the head of PL if the function f is monotonically increasing, or from

the tail of PL' if f is monotonically decreasing. We call PL a base PL and call PL' a derived

PL.

2.3 Multilist Scheduling Model

Now, we can modify the p2-1ist model by allowing the programmer to use one list to represent

another list(s), and formally define the multilist scheduling model as follows.

e On each processor Pi, the programmer creates some PLs, say k, PLs, denoted by P L,,

I <j < ki.

e For each VLj, the programmer designates certain PLs (in the system) which are merged

into VL,. The processor Pi will automatically schedule a task from the head of V'L, ,

which is constructed from these designated PLs. If the scheduled task is from processor

Pi,, then Pi, will subsequently delete the task from PLj, PLi,k,,. Implicitly, some

VLs are also changed accordingly.

e At runtime, for each task assumed to be stored on some processor P, (which can be

designated by the programmer), the programmer assigns to the task ki priorities, denoted

by Tr1,7r2 , k..... Tk,. The system will insert the task into each PL3, according to r,.

15

S.....i.........

Memory Memory Memory
PL1 1 PL1 k PL21 PL 2 k PLP1 PLpk

3 SI

WsL 1J7 4 ~ 9

T5 5 I T

Tj 2 2 2 [

v11 1:L 22 VLP
T3 5 T3 5 4

T4 6T4 ~6 T1 7
T: a TI 7 T5 9

"P1 II P2 2I2 P, IC3

CPU CPU ... CPU

Figure 2.6: Multilist scheduling model.

Implicitly, some VLs are also changed accordingly. Note that priorities of a task can be

changed dynamically.

The programmer uses the first two operations to specify a "scheduling pattern" by which the

system creates PLs and merges PLs into VLs. Figure 2.6 is an example of scheduling pattern.

In the p-list and p2-fist models, we hiave mentioned that the priorities of a task are allowed to

be changed at runtime. In the multilist scheduling model, the scheduling pattern can be also

changed at runtime. Although the scheduling patterns are usually fixed, we will present a good

example of a scheduling algorithm (in Section 3.1.2.2) whose scheduling pattern is changed at

runtime.

In addition, if a PL can be derived from another PL with a monotonic priority translation

function f, the programmer only needs to specify this derivation relation for the derived PL and

does not need to assign redundant priorities. The system will only insert tasks into and delete

tasks from the base PL, not the derived PL. In order to schedule a task from the derived PL, the

system schedules the task from the head or-the tail of the base PL, depending on whether f is

monotonically increasing or decreasing. Since the function f is a user-defined runtime function

16

and it can also depend on some runtime information, this potentially provides a simple way to

dynamically change priorities, though we have not found an appropriate example to present in

this thesis.

The above definition captures the essence of the multilist scheduling model. Chapter 4

will show that the addition of parameters for tasks, PLs, and VLs can further improve the

performance of the system. For example, the programmer can give an estimated grain size for

each task so that our system can use it to balance the load. Appendix A presents the interface

for the model.

After the programmers specify the above information, they can assume that the system will

schedule tasks in an order roughly corresponding to the specified priorities. However, this

order may vary slightly fof heuristic reasons. So, programmers should not reply on priorities

for program correctness.

2.4 Discussion

If a programmer wants to implement a scheduling algorithm without the help of our model, he

or she needs to do the following work.

1. Set up the scheduling pattern for the scheduling algorithm.

2. Assign priorities (and some other parameters) to each task.

3. Implement each PL in the pattern.

4. Implement the details of scheduling tasks from VLs according to the pattern.

The multilist scheduling model successfully decomposes the above work into two parts:

the first two items and the last two items. Programmers only need to specify the scheduling

policy in the first part, while the second part (the details of maintaining PLs and VLs) can

be hidden from programmers. In fact, maintaining PLs and VLs is the most difficult part of

writing a scheduling algorithm. Maintaining VLs is especially complicated due to the need 'for

interprocessor communication.

17

The decomposition of the task scheduling process allows the programmers to focus on

designing efficient scheduling algorithms, while allowing the system designers to focus on

designing efficient supportive routines. In the former case, programmers are encouraged to

design more interesting and efficient scheduling algorithms, which are hard to implement

without the help of our system. Chapter 3 will illustrate several scheduling alr,,, ithms based

on this model. In the latter case, the system designers can continue to develop better methods

to optimize the performance of the supportive routines. Chapter 4 will propose some efficient

techniques to maintain VLs and PLs for the current implementation.

In addition, we argue that it is easy for (scheduling) programmers to specify scheduling

policies (items 1 and 2) based on the multilist scheduling system. When programmers come

up with scheduling algorithms, the programmers usually can easily figure out the scheduling

sequences of tasks (actually they are just the task sequences in VLs). Therefore, we argue that

they should be able to specify the scheduling patterns and to assign priorities corresponding

to the scheduling sequences. We illustrate the simplicity of implementing many scheduling

algorithms based on this model in the next chapter. At least, it is less painful to implement

scheduling algorithms based on-our model than to write task scheduling routines from scratch.

18

Chapter 3

Examples of Scheduling Algorithms

This chapter will develop multilist scheduling schemes for several scheduling algorithms to

demonstrate how easily the model can be utilized and how widely the model can be applied to

applications. Section 3.1 will show several main examples of scheduling algorithms, each using

one distinct scheduling pattern (defined in Section 2.3). Section 3.2 will show other examples

of scheduling algorithms whose scheduling patterns are the same as the ones in Section 3. 1.

Finally, Section 3.3 will give some more discussion.

3.1 Main Examples

This section will show several main examples of scheduling algorithms, each using one distinct

scheduling pattern. Section 3.1.1 will propose two multilist scheduling schemes to implement

two different scheduling algorithms for parallel best-first search. In both of the schemes,

each processor needs to create one physical list (PL). Section 3.1.2 will propose two multilist

scheduling schemes to implement two different scheduling algorithms for parallel divide-and-

conquer. In bo:h of the schemes, each processor needs to create two PLs. Section 3.1.3
will propose a multilist scheduling scheme to implement a scheduling algorithm for parallel

synchronous network simulation problems. In this scheme, each processor needs to create p

PLs, if there are p proccssors.

19

3.1.1 Parallel Best-First Search

Best-first search (BFS) is a common computation paradigm, in which the program always

schedules the best task among all possible tasks for execution. Exampfes of BFS computations

include some branch-and-bound(B&B) problems such as the traveling salesman problem (TSP)

[29], and some state-space search problems such as the 15-puzzle [751.

A BFS computation can be viewed as a process of expanding a tree. Each node in the tree

corresponds to a problem instance, and children of the node correspond to its subproblems.

Each node has an associated cost of its corresponding problem instance. The computation

always chooses the node with the least cost for execution. A node is called a solution node if

it represents a solution. A BFS computation tries to find among all the solution nodes the one

with the least cost.

Most BFS algorithms maintain an invariant property, called admissibility [75], in which the

cost of each node is less than or equal to the costs of its children. In these algorithms, a BFS

computation terminates when it has found some solution nodes, the least cost among which

is Ci,•, and it has expanded all nodes with costs smaller than Cmn. Since the descendants

of current nodes all have no smaller costs due to admissibility, we will not be able to find a

solution node with a cost smaller than Cmj. Thus, the node with cost Cm,, is the result of this

computation.

3.1.1.1 Scheduling Algorithm Based on a Global Priority Queue

In order to solve BFS efficiently in parallel, we can use a simple scheduling algorithm requiring

a global priority queue (GPQ), as shown in Figure 3. 1(a). This scheduling algorithm will be

called PBFS-GPQ (Parallel BFS with a GPQ) in this thesis. In this algorithm, each new node

corresponding to a task is inserted into the GPQ in accordance with the cost associated with the

node; each processor schedules the node with the least cost in the GPQ. Zhang [1081 proved

that the algorithm can balance the load very well (without considering the communication

overhead).

The PBFS-GPQ scheduling algorithm described above can be easily implemented in the

multilist scheduling model. The algorithm, whose scheduling pattern is shown in Figure 3. 1(b),

20

GPQ

w

p] P."12 pp "
CPU]CPU .. CPU

(a)

Memory Memory Memory
PL1 PL2 PLP

VL " VL2 VLp -

P1 P2 Pp

CPUCPCU

(b)

Figure 3.1: Scheduling algorithm for PBFS-GPQ: (a) using one GPQ and (b) using our model.

21

is described as follows:

"* On each processor, create one PL.

"* For each node (corresponding to a task) with cost C, assign a priority, r = -C. Note

that minimum cost translates to highest priority.

"* For each processor P,, merge all the PLs (from all the processors) into VL,. Thus, each

virtual list (VL) is actually identical to the GPQ.

Since each processor schedules a task from its VL which is identical to the GPQ, the above

multilist scheduling scheme realizes the PBFS-GPQ scheduling algorithm. Note that this is a

basic technique to form a GPQ.

The scheduling pattern for PBFS-GPQ will recur throughout this chapter. We therefore find'

it useful to define a "global scheduling subpattern", as follows.

Definition 3.1 A subpattern of a scheduling pattern is called a "global scheduling

subpattern" if it contains at least one PL on each processor, and all its PLs are

merged into all VLs.

As for the interface to the application layer, application programmers only need to do the

following two things:

"* Declare initially that the PBFS-GPQ scheduling algorithm will be used. (This establishes

the appropriate scheduling pattern in the scheduling layer.)

"* Declare the cost of a node whenever one is created. (This allows the node's priority to

be calculated in the scheduling layer.)

22

3.1.1.2 Scheduling Algorithm with Randomization

For parallel best-first search, Karp and Zhang [57] proposed a scheduling algorithm with the

technique of randomization. This scheduling algorithm will be called PBFS-R (Parallel BFS

with Randomization) in this thesis. In this algorithm, each processor has one local priority

queue. Whenever a node is created, we ranidomly select a destination processor and then store

the task into the local priority queue of that processor, according to the cost of the node. Each

processor always schedules tasks for execution from its own local priority queue. Karp and

Zhang also proved that this algorithm can balance the load well with a very high probability.

The PBFS-R scheduling algorithm described above can also be easily implemented in the

multilist scheduling model, as follows:

"* On each processor, create one PL.

"* When a node (corresponding to a task) with cost C is created, designate a processor at

random to store the task, and then assign a priority, 7r = -C, to the task.

"* For each processor P,, only merge its local PL, into V/L,. Thus, each V*L, is actually

identical to PL,. So, we perform communication only when a task is created, not when

a task is scl~eduled.

Hence, this multilist scheduling scheme above realizes the Karp and Zhang's scheduling

algorithm. This is a good example of an algorithm in which a task is stored in the PLs on a

different processor from the one creating the task.

3.1.2 Parallel Divide-and-Conquer

Divide-and-Conquer(D&C) is another common computation paradigm, in which the solution of

a problem is obtained by solving its subproblems recursively. Examples of D&C computations

include various sorting methods such as quicksort [431, computational geometry procedures

such as convex hull calculation [791, Al.search heuristics such as constraint satisfaction tech-

niques [401, adaptive data classification procedures such as generation and maintenance of

23

quadtrees [861, and numerical methods such as multigrid algorithms [72] for solving partial

differential equations.

A D&C computation can be viewed as a process of expanding and shrinking a tree. Each

node in the tree corresponds to a problem instance; children of the node correspond to its

subproblems. During the computation, each internal (non-leaf) node goes through two phases.

The first phase is the divide phase during which the problem instance associated with the node
is divided into subproblems. The second phase is the combine phase during which the solution

of the problem instance associated with the node is derived by combining solutions of the

subproblems associated with the node's children. Each leaf after its creation will perform some

computation and return the results to its parent. At a given time, noxles on a wavefront that

cuts across all paths from the root to leaves can be active in performing divide, combine, or

compute operations. Along each path the wavefront first moves down from the root to its leaf

and then up from the leaf to the root. For simplicity of discussion, we will ignore the shrinking
phase. It will be useful to define a frontier node as a node which has been generated but has

not been expanded and a local frontier node of a processor as a frontier node whose parent was

expanded (or executed) on this processor.

3.1.2.1 Wu-Kung's Scheduling Algorithm

In order to perform D&C efficiently in parallel, we [105] designed an efficient scheduling

algorithm, called PDC-WK (Parallel D&C with Wu and Kung's method) in this thesis. The

PDC-WK scheduling algorithm schedules nodes according to the following rules. First, if

a processor has local frontier nodes, it must schedule the deepest among them. This is the

depth-first search which can minimize the local memory requirement and avoid wasteful

interprocessor communications. Second, when a processor runs out of local frontier nodes,

it follows breadth-first search to schedule a frontier node closest to the root, from all (other)

processors. Note that the node closest to the root is likely to contain the largest subtrees, which
will have the most locality and therefore will need the least communication.

We also proved that, among all the scheduling algorithms which can split the load nearly

evenly, our algorithm is optimal with respect to the communication cost, which is defined to

be equal to the total number of cross nodes. (A cross node is a node which is generated by

one processor but expanded by another processor.) A more detailed description for the above

24

Memory Memory Memory
GL1 LL 1 GL 2 LL 2 GLp LLp

S" /

V' 1 VL 2 VLP= -J

P2 Pp

CPU CPU .. CPU

Figure 3.2: Scheduling pattern for PDC-WK.

results will be presented in Section 5.1.

The PDC-WK scheduling algorithm described above can be easily implemented in the

multilist scheduling model. The algorithm, whose scheduling pattern is shown in Figure 3.2.

is described as follows.

"* Create two PLs, local list (LL) and global list (GL), on each processor.

"* For each processor P, merge all the GLs (from all the processors) and its own LL into

VL,. According to Definition 3.1, this scheduling also includes a global scheduling

subpattern like PBFS-GPQ, but each processor may also schedule nodes from its own

LL.

"* For each node (corresponding to a task), assign to it two priorities: local priority ,L =

(corresponding to LL) and global priority Tr = -l (corresponding to GL), where I is the

level of the node in the tree. A node is said to be at tree level 1 if it is the ith node on the

path from the root to the node. The root is at tree level 0.

25

The above multilist scheduling scheme satisfies the scheduling rules of PDC-WK, as we

shall now show. Since lTL = 1, the processor always follows depth-first search to schedule

a local node, if one exists; otherwise, because 7rG = -/, the processor always schedules the

node closest the-root from processors. Thus, this scheme realizes the PDC-WK scheduling

algorithm.

Since TrL = -rG in the above scheduling scheme, we can further improe it by letting LL

be a derived PL based on GL with the priority translation function f(7r) = -7r. This is a good

example showing that derived PLs can be used to optimize the performance.

As for the interface to the application layer, application programmers need to do the

following two things.

"* Declare initially that the PDC WK scheduling algorithm will be used. (This establishes

the appropriate scheduling pattern in the scheduling layer.)

"* Declare the tree level I of a node whenever a new node is created. (This allows the node's

priorities 7rL and ,G to be calculated from I in the scheduling layer.)

3.1.2.2 Scheduling Algorithm Based on the Round-Robin Strategy

For parallel D&C, some researchers in [34, 44, 821 have used another scheduling algorithm

based on a round-robin strategy. This scheduling algorithm, called PDC-RR (Parallel D&C

with the Round-Robin strategy) in this thesis, is the same as the PDC-WK schedulin algorithm

except for the following: in PDC-RR an idle processor will try to schedule the node closest to

the root among those on its pre-selected processor (not in the whole system as PDC- WK), which

is dynamically changed in a round-robin fashion as follows. Each processor has a variable

s, representing the ID of the pre-selected processor. When the processor is idle, it requests a

frontier node from processor P, (as above) and lets the next s be (s mod p) + I such that the

next node request will be sent to the next processor P(l•fwdp)+i. One possible drawback for

PDC-RR is: since the node scheduled by the idle processor is closest to the root only on P, (not

globally), some other processors may have nodes much closer to the root, i.e., it is very likely

that the scheduled node has not the largest subtree.

26

Since the difference between the PDC-RR and PDC-WK scheduling algorithms is in the set

of processors from which an idle processor will schedule a node, we can implement PDC-RR by

modifying PDC-WK as follows: For each processor Pi, merge the GL on processor P,, and the

LL on Pi into VLj, where si is a variable on Pi. After processor P., is requested, the variable

si is changed to (s, mod p) + 1. Thus, this above scheduling policy based on the multilist

scheduling model realizes the PDC-RR scheduling algorithm. This scheduling algorithm is a

good example showing that the scheduling pattern may be changed dynamically.

3.1.3 Parallel Synchronous Network Simulation

Section 2.2 defined the Synchronous Network Simulation (SNS) problem by using a graph to

represent it. In that section, we also mentioned a dynamic scheduling strategy based on the

criterion of keeping the total number of cross edges (also see the definition in that section) as

small as possible. In this section, we will first describe the scheduling algorithm based on the

dynamic scheduling strategy and then propose a corresponding multilist scheduling scheme.

In this scheduling algorithm, we partition the graph of nodes (each corresponding to a

thread) over the processors at the beginning of the computation. Then, during each phase, we

dynamically balance the load as follows:

1. If a processor has some local nodes (residing on the processor) that have not been executed

yet, it always schedules the local nodes which are connected to no cross edges; then, it

schedules the local nodes which are connected to some cross edges.

2. When a processor has executed all local nodes, it schedule a node from another processor

such that the total number of cross edges increases the least.

The scheduling algorithm described above can be easily implemented in the multilist model.

The algorithm, whose scheduling pattern is the same as the one in Figure 2.5, for a p-processor

system is described as follows:

* Create p PLs on each processor. Let PLjj denote the jth PL on processor P,.

27

"* For each processor Pi, merge all the ith PLs (i.e., PLj, for all j) into VL,.

"• Assign p priorities to a node on Pi as follows:

- The jth priority of a node v, j -# i, is rj = E,,,j - E,j,, where E,,,k is the number

of edges (including in-edges and out-edges) between V and all the nodes on Pk.

- If a node v is connected to some cross edges, its ith priority 'ir is set to Em,, + 1,

where Em,,., is the maximum number of edges which each node can have; otherwise,

the priority is set to an even higher priority, say Em,, + 2.

One can verify that the above multilist scheduling scheme satisfies the two scheduling rules

for parallel SNS.

We note that this scheduling algorithm needs to change priorities at run time. When a node

is moved to another processor, some E,,.i values may be changed and therefore the priorities of

the node's neighbors will be changed accordingly. This is a good example showing the need of

changing priorities dynamically.

As for the interface to the application layer, application programmers only need to do the

following:

Initialize the scheduling algorithm for parallel SNS by describing its graph of nodes,

corresponding to threads or tasks. (This establishes the -appropriate scheduling pattern,

and allows the priorities of the nodes to be calculated from their environment in the graph,

in the scheduling layer.)

3.2 Other Examples of Scheduling Algorithms

This section will present some more examples of scheduling algorithms: the factoring algorithm

for parallel loops in Section 3.2. 1, the principle variation splitting algorithm (slightly modified

from [21, 69]) for a-,3 search in Section 3.2.2, the scheduling algorithm for parallel quicksort

in Section 3.2.3, and the scheduling algorithm for parallel asynchronous network simulation in

Section 3.2.4. The scheduling patterns for these scheduling algorithms are the same as the ones

used in the previous section.

28

3.2.1 Parallel Loops with the Factoring Technique

Parallel loops (without dependencies between their iterations) are very rich resources where

we can exploit parallelism in many applications, especially for scientific applications. Since

the amount of computation in each iteration may not be fixed, an efficient algorithm needs to

balance the load at runtime while minimizing the amount of communication.

Hummel et al. [481 proposed an efficient runtime technique, calledfactoring. Consider how

to parallelize a parallel loop with m iterations on p processors. Without loss of generality, we

assume m to be p(2k - 1), where k is an integer. In the factoring technique, iterations are first

grouped into tasks such that there are p tasks each of which will execute 2 k-1 iterations, p tasks

each of which will execute 2 -2, ..., and p tasks each of which will execute one iteration. Then,

each processor always schedules the task with the largest number of iterations next because the

fine grained tasis should be preserved for better load balancing near the end. Since the total

number of tasks is pk, we schedule tasks at most pk times, which is a very small number when

compared with m.

We can implement this algorithm in our multilist model by simply using the scheduling

pattern of the PBFS-GPQ scheduling algorithm and letting each task with 2' iterations have the

priority i.

Nishikawa [70] has recently suggested the following modification to further reduce com-

munication in a distributed-memory system. Initially, we evenly distribute these tasks over

the processors such that each processor has one task with 2 k-t iterations, one task with 2 k-2

iterations, ..., and one task with one iteration. Basically, each processor executes its own tasks

based on the same strategy: schedule the task with the largest number of iterations first. How-

ever, when a processor (say PI) "falls far behind" another processor (say P_), P, will -off-load'"

some task to P2. To be more precise, let us consider the situation in which processor P, is the

slowest processor which has the task with 2' iterations and processor P2 is thefastest processor

which has the task with 2j iterations, where i > j. The programmer can decide a threshold t

(a positive integer).. Then, if and only if i - j > t, processor P2 will schedule the task with 2'

iterations from Pt.

Nishikawa's scheduling algorithm can also be easily implemented in our multilist model by

using the scheduling pattern of PDC-WK. Initially, we partition tasks as above and then assign

29

priorities to each task with 2i iterations as follows: the local priority IrL = i and the global

priority irG = i - t. For the situation given in the previous paragraph, the task with 2' iterations

on processor P1 has a global priority i - t while the task with 2' iterations on P., has a local

priority j. If i - j > t (i.e., i - t > j), then P2 will schedule the task with 2i iterations from P1.

Otherwise, no load balancing is required. Thus, this multilist scheduling scheme is the same

as Nishikawa's scheduling algorithm.

Since 7rL = 7rG + t, we can improve the scheduling scheme by letting LL be a derived PL

based on GL with the priority translation function f(ir) = r + t. This is another example (PDC-

WK was the first example) showing that we can use derived PLs to optimize the performance.

The priority translation function here is monotonically-increasing while that for the PDC-WK

scheduling algorithm is monotonically decreasing.

3.2.2 Parallel Alpha-Beta Search with Principle Variation Splitting Algo-

rithm

Alpha-beta (a-3) search [58] is a common computational paradigm for two-play. r game search

problems, e.g., Chess [91] and Othello [64]. An a- 3 computation can also be viewed as a

process of expanding/shrinking a tree, as in D&C in Section 3.1.2, but with the following

properties.

e Each leaf node has an estimated heuristic value and returns this value to its parent.

* Each internal node in the divide phase expands some children and sorts them according

to how likely they are to contain an optimum heuristic value in the subtree rooted at the

child. We will let the leftmost child be the most promising child.

* Each internal node in the combine phase receives all the values returned from its children

and then returns the maximum of the negatives of these values.

* The solution of a game tree is the returned value of the root and the identity of the child

who has the negative of that value.

30

Principle Variation (PV)

A :PV-subtree

Figure 3.3: PV-subtrees.

In order to solve a-/3 efficiently in parallel, some researchers [21, 69] have proposed the

principle variation splitting (PVS) algorithm. In the PVS algorithm, we search the path from

the root to the leftmost leaf, in the first stage. The path is called principle variation (PV) and

nodes on PV are called PV nodes; in addition, a subtree is called a PV-subtree, as shown in

Figure 3.3, if its root is a child of a PV node but the root itself is not a PV-node. Then, in the

next stage, PV-subtrees rooted at the deepest tree level are split among processors. After this

stage completes, subtrees rooted at the second deepest tree level are split among processors in

the next stage, and so on. These researchers used the so-called tree splitting algorithm in [691

to split subtrees among processors. But, here, we will simply use the PDC-WK scheduling

algorithm (described in Section 3.1.2) to split subtrees among processors so that we balance the

load of nodes in these subtrees while minimizing the communication. Although the original

PVS algorithm goes through the stages serially, our scheduling algorithm for PVS does not have

to. That is, if there are no available nodes for the current stage, idle processors can schedule

the nodes for the next stage.

Now, we want to design the PVS algorithm based on the multilist scheduling model as

follows. The multilist scheduling scheme for PVS uses the same scheduling pattern as PDC-

WK. Note that each processor has two physical lists, the local list (LL) and the global list (GL).

(For simplicity of discussion, we omit the combine operation in a-,3 search, as we did for

D&C.) We assign priorities to each node according to the following rules.

*For each node on PV, its local priority is 'L 7r-,, and its global priority is 7rG = Ir,,,x,

where r,,,, is the priority larger than any of the priorities assigned below.

31

For each node (corresponding to a task) at tree level i and in a PV-subtree rooted at tree

level j, let the local priority be c • j + i and the global priority be c • j - i, where c > 2h

and h is the tree height.

From the first rule, executing the nodes in PV is the first priority. From the second rule,

since c > 2h and h > i, j represents the primary key and i represents the secondary key.

Since j is the primary key, we search PV-subtrees rooted at a deeper tree level earlier. For the

PV-subtrees rooted at the same tree level, the value j is the same and therefore the scheduling

algorithm is just the same as PDC-WK. Thus, the above scheduling scheme realizes our PVS

algorithm.

As for the interface to the application layer, application programmers only need to do the

following things.

Declare initially that the PVS scheduling algorithm will be used (this will establish the

scheduling pattern of PDC-WK in the scheduling layer); then, give the maximum tree

height h.

* For each node (corresponding to a task), declare the tree level i of the node and the tree

level j of the PV-subtree that includes the node. (This allows the node's priorities rL and

lrc to be calculated from i, J and h in the scheduling layer.)

3.2.3 Parallel Quicksort Algorithm

Sorting is the most common operation for data processing. Given an array of n elements each

containing a key (not ordered), the problem is to sort the elements in the array according to the

key values.

Quicksort [431 is a fast sorting algorithm, based on the divide-and-conquer technique, and

with an average computation time of' O(n log n). This algorithm is described as follows:

* Pick the first element (or pick one at-random). Let k be the key value of this element.

'If g(n) = O(f(n)), there exists some positive c for which g(n) <. cf(n) for all sufficiently large n.

32

e Partition the array into two subarrays of elements such that the key values of elements in

one subarray are less than k and the key values in the other subarray are greater than or

equal to k.

* Recursively sort each subarray.

Since the quicksort algorithm is based on the D&C technique, we can, of course, apply

the PDC-WK scheduling algorithm to the quicksort algorithm. However, based on some

characteristics of quicksort, we suggest different priority assignment for possibly improving

the PDC-WK scheduling algorithm.

In PDC-WK, since it is assumed that the shape of a tree (or subtree) cannot be predicted a

priori, we can only use the tree depth of a node to roughly estimate the average computation

amount (or locality) of a node and then use it to evaluate the global priority. However, for

the quicksort problem, the average time complexity of a node, corresponding to a sorting

subproblem with an array of n' elements, is O(n' logn'). Since a node with a larger value of

n' will typically require more computation, an idle processor wants to schedule the node with

the largest n' among all the other processors. So, we can use ni - n to represent the global

priority of the node, instead. Note that the item -n is added to the global priority to ensure

that the global priority is non-positive and, therefore, less than or equal to the local priority. As

for the local priority, since each processor may want to sort a small local array first in order to

preserve the large array tasks for later donation (note that donating a task with greater locality

may reduce the communication amount as mentioned earlier), we can let the local priority be

n - n.

One potential problem for the above algorithm is that the value of n' can be any number

between 0 and n and therefore there could be too many distinct priorities, which will result in

more task scheduling overhead (this will be discussed in greater detail in the next chapter). To

avoid this problem, we can squash the range of priorities, by letting the local priority of a node

be2 [lg(n/n')] and the global priority of the node be [lg(n'/n)]. This reduces the number of

distinct priorities to at most 2 Ig n, while roughly preserving their relative sequence.

21g z = log2 z. And, rz] is the smallest integer larger than or equal to z.

33

3.2.4 Parallel Asynchronous Network Simulation

In Section 3.1.3, we discussed the synchronous network simulation problem. However, some

network simulation problems dto not have to be synchronized at the end of each phase. In those

problems, as long as a node (thread) has received all of its coming data via its in-edges, the node

can advance to the next phase and continue to execute. We call such problems asynchronous

network simulation (ANS).

For parallel ANS, we can modify the scheduling algorithm for parallel SNS (in Section
3.1.3) by redefining the ith priority irý of a task (corresponding to a process in some phase) as

follow: let the primary key be the negative of the phase index3 and the secondary key be the

original ri. In accordance with the primary key, the new algorithm will try to schedule all the

tasks in the current phase before advancing to the next phase. Thus, the scheduling algorithm

basically is the same as the scheduling algorithm for parallel SNS except that some processors

may be able to start executing some tasks for the next phase while waiting for tasks (from other

processors) for the current phase.

The above scheduling algorithm still has one problem: we often need to move tasks over

processors to balance the load near the end of each phase. We can reduce the communication

for load balancing by balancing the load only when one processor falls far behind another

processor. For example, suppose that the fastest processor, say Pi, has some tasks in a phase
0j, while the slowest processor, say Pj, has no tasks in a newer phase than 6j, where 0, > 01.

If Oi - Othr > .,, we say P3 falls far behind Pi, and then Pj can schedule some task from

processor Pi, where Oth, is a positive threshold given by the programmer.

To implement the above modified scheduling algorithm, we only need to change some

priorities as follows. For each task on each processor Pi, we add 0th. to the primary key of

its ith priority. Since the ith priority of the task stands for the priority of scheduling the task

locally, a processor tends to schedule local tasks with high priorities unless another processor

falls far behind.

3The index of a phase is the index of its previous phase plus one.

34

3.3 Discussion

The multilist scheduling schemes proposed in this chapter demonstrate that our model can be

widely applied to many scheduling algorithms. These examples also demonstrate that it is much

easier to implement scheduling algorithms using multilist scheduling than to write sophisticated

scheduling routines from scratch. For example, in our experiments, the code for the PDC- WK

and PBFS-GPQ scheduling algorithms (shown in Appendix A.2) only has about 10-20 lines.

A program of this size can be written within tens of minutes. This is in sharp contrast with

previous dynamic load balancing programs, which would typically require thousands of lines

of C code. This was the case in our earlier experience [31, 62] in paral!elizing Noodles, a

solid modeling program [23]. It took us months to write the load balancing part! Since our

approach can greatly shorten the time of implementing a scheduling algorithm, we expect more

interesting and complicated scheduling algorithms to be devised and implemented.

Although this chapter shows the simplicity of implementing a multilist scheduling scheme

for a given scheduling algorithm, we offer no advice on how to come up with the scheduling

algorithm itself. This is because there are too many factors which can affect system perfor-

mance. These factors includes, for example, the relative importance of increasing parallelism,

minimizing the total amount of computation, minimizing the required amount of communi-

cation, reducing the memory requirement, and reducing the number of distinct priorities. We

find it difficult to provide a simple rule for assigning priorities based on all the factors. So,

we leave this problem open. We only want to argue that it is simple to implement a multilist

scheduling scheme for a given scheduling algorithm, and (in the next chapter) that our general

approach incurs no significant performance overhead. In addition, since it is so easy to vary

a scheduling algorithm in our model by simply adjusting priorities or scheduling patterns, it

becomes easy for a programmer to find the best scheduling algorithm by searching the design

space empirically.

35

36

Chapter 4

Implementation Issues

In addition to the issues of simplicity and generality of the multilist scheduling model (as

discussed in the previous chapters), another important issue is to efficiently implement this

model such that our general approach incurs no significant performance overhead. Sections 4.1

and 4.2 will respectively propose some efficient techniques of implementing virtual lists (VLs)

and physical lists (PLs), on which the model is based. Section 4.3 will show that our general

approach incurs no significant performance overhead at least for certain important scheduling

algorithms.

4.1 Maintaining Virtual Lists

Since VLs are conceptually constructed from PLs which may be on different processors, we

need to maintain VLs via interprocessor communication. Section 4. 1.1 will first describe the

standard protocol, which we can use to merge PLs into VLs in all cases. Section 4.1.2 will

describe a more efficient protocol, called the global protocol, which we can use when the

scheduling pattern includes a global scheduling subpattern (as defined in Definition 3. 1).

4.1.1 Standard Protocol

37

Memory Memory
PLI

_• request a task

Sdonate a task

P1 P2

Figure 4.1: An example of the standard protocol (PL1 is merged to VL 2).

The standard protocol is applicable whenever there is a need to merge a PL into a VL over a

network. Figure 4.1 illustrates an example in which a PL, say PLI on processor P,, is one

of the PLs merged into a VL, say VL 2 on another processor P2 . Let 7rn7 denote the highest

priority in PL 1 . We can straightforwardly implement the standard protocol as follows.

* Whenever 7r"' is changed, P, reports the new 7rin to P2.

* P2 requests a task from PL I if 7r"' is higher than the priorities in any other PLs merged

into VL2. Then, P, donates a task from PLI to P2 (and re-moves the task from all other

PLs on Pi).

In the standard protocol, it may turn out that a PL which is merged into a VL may need to

report to the processor with the VL too frequently. In order to reduce the number of reports

to achieve better performance, we allow the programmer to provide some more information in

the following two ways.

e The programmer can describe the known range of priorities in each PL. Consider the

scheduling pattern in Figure 4.2, in which the priority range of PLi is between ,rTj and

38

Memory Memory
PLI PL2

Range

omit reports

P,P P2

CPU CPU

Figure 4.2: Omitting reports based on given priority ranges.

7r1(Ž_ rt). When the priority of some task in PL2 is greater than or equal to ,r,, VL 2

can disable all reports from PL1 because processor P2 will not need to schedule a task

from PLI. For example, in the PDC-RR scheduling algorithm, since each local list LL

contains only non-negative priorities, and each global list GL contains only non-positive

priorities, a processor does not need to report the maximum priority of its GL to any other

processors. A processor will request a task from a GL only when the processor becomes

idle.

of asks no report report no report

next phase current phase

[] I ipriority

Figure 4.3: Indivisible ranges for parallel ANS (no report when the phase index is still the

same).

e The programmer can define indivisible priority ranges for each PL, such that all the

priorities within one range are considered as one priority value by other processors.

39

Thus, the PL need not report when updating r"• within the same range. For example,

for the parallel asynchronous network simulation (ANS) described in Section 3.2.4, we

need to balance the load mainly when the primary priority, the phase index, is changed.

Since it is not important to let the other processor know the secondary priority, the

programmer can declare all priorities with the same phase index to lie within the same

priority range, so that PLs will avoid making reports until the phase changes, as shown

in Figure 4.3.

4.1.2 Global Protocol

In some situations, we can achieve better performance by using a different protocol. In

particular, let us consider the case where the scheduling pattern includes a global scheduling

subpattern (defined in Definition 3.1). The case is important for many scheduling algorithms

(in Chapter 3), e.g., PBFS-GPQ, PDC-WK, the quicksort algorithm, the factoring scheduling

algorithm, and the principle variation splitting algorithm. For simplicity of discussion, we

consider that in the global scheduling subpattern each processor P, has one and only one PL,

denoted by PL1 , which is merged into each VL (see Figure 3. 1(b)). Let Tr."ax denote the highest

priority in PL, and r"ma denote max(r7`ax) for all i. For a scheduling pattern that includes

the globai scheduling subpattern, the standard protocol may be inefficient in the following

situations:

" Whenever the value of •'r" is changed, processor P, will broadcast a message to all

VLs even if some other rnax is already higher than ,.rnax. The broadcast may result in

unnecessary communication overhead.

" Many processors may simultaneously send task requests to the processor containing the

task with 7rm'x. This processor which receives these requests will "off-load" more than

one task. Among these offloaded tasks, perhaps, only the first task has a high priority.

For example, PL1 has tasks with priorities (4, 6, 8, 9) and PL2 has tasks with priorities

(1, 2, 10). If P3 and P4 need to request tasks at the same time, they both will send task

requests to P,. Thus, either P3 or P4 will get the task with a low priority of 2.

In order to improve the efficiency when there is a global scheduling subpattern, we will

introduce a central mechanism to help regulate the schedtling protocol. This mechanism is

40

called a global load balancer (GLB), and 'his kind of scheduling protocol is called a global

protocol.

In Section 4.1.2.1, we will first propose a simple global protocol to perform load balancing

by considering only those tasks with the highest priority rx: . If there are enough tasks with

priority 7rl, we can ignore the overhead that task prioritization causes. However, if there are

not enough such tasks, task prioritization may result in significant overhead. We will describe

a solution to this problem in Section 4.1.2.2 and describe an advanced protocol based on the

solution in Section 4.1.2.3.

4.1.2.1 Simple Global Protocol

For a global protocol, the GLB basically wants to perform load balancing by considering only

those tasks with the highest priority r'r . Let To be the set of tasks with 7rma. (Later, we

will let T, be the set of tasks with 7r"az - 1.) The GLB needs to keep track of 7r"O' and To

in order to balance the load. So, if a processor sends a task request to the GLB, the GLB can

decide which task in To to donate.

In the global protocol, the GLB needs to monitor each processor's status and keep track of
ir,'. Each processor Pi has the following status:

0 T."'•. The highest priority in PL,.

* ,.maz. The highest priority in the entire system. It must be obtained from the GLB

because only GLB can gather all 7r"az together to determine the value. Since some

other PLs (e.g., the local list for PDC-WK) may also be merged into VL,, P, needs to

compare 7rma: with priorities in those PLs each time when scheduling tasks from its VL.

Therefore, it would be more efficient for each processor to have the value 7r. z locally.

t L[": The load of those tasks in To and on Pi. The load of a given set of tasks T is

-- eT G-, where GT is the grain size of T. Basically, the grain size of a task represents
the amount of computation for the task, given by the programmer. The grain size will

be defined more precisely in Section 4.1.2.3. The GLB can balance the load by donating

tasks from To Zo an idle processor.

41

* LT,: The load of those tasks in T, and on Pi, where T, is the set of tasks with priority

V1111 - 1. The GLB can balance the load by donating tasks in T , while T0 is empty. The

purpose of having T1 is to make the transition of load balancing from To to TI smoother.

If we do not do this, the GLB cannot respond to the idle processor while To is empty,

and therefore the idle processor will keep idling.

Now, we can describe a simple global protocol as follows.

1. The system balances the load round-by-round, where a "round" is defined as a period of

time in which n''•= remains the same.

2. Each processor Pi reports ir!- and the changes of LT " and LT' to the GLB, in either of

the following two situations.

e LTo or L4' is changed "significantly" (e.g., by a factor of two), or

• 7r1,= is changed (i.e., a new round is started).

3. When 7r`: is changed, the GLB broadcasts the new value of 7''.a to each processor to

start a new round. Note that 7mr' decreases only when no more tasks have priorities
7 max.

if >

4. When a processor requests a task, the GLB tries to balance the load by donating a task in

To to the processor. If To is empty, the GLB will try to donate a task in T7-, instead.

An important feature of the above protocol is that an idle processor can request a task via

as few as three "hops": (1) the idle processor issues a task request to the GLB. (2) the GLB

forwards the message to the donor (selected by the GLB), and (3) the donor donates a task to

the idle processor.

Although the GLB is conceptually centralized, it actually uses a tree structure, which can be

distributed over processors as illustrated in Figure 4.4 (note that this need not be a binary tree).

The main purpose is to prevent a single GLB process from becoming a bottleneck, especially

when the number of processors is large (say 1000). For example, in the global protocol,

broadcasting and collecting information would make a single GLB become a bottleneck given

a large number of processors. An extra advantage for such a tree structure is that load balancing

42

GLB........
GLB

(on PI)

(on P) (On P2)

Figure 4.4: An example for the GLB hierarchy.

may happen in parallel. For example, as shown in Figure 4.4, if processors Po and P- ',Ave some

tasks in To and processors P, and P3 simultaneously request tasks, Po and P2 can respectively

donate tasks in To to P, and P3 at the same time. In this case, each task request requires three

"hops".

Definition 4.1 In a processor tree (as illustrated in Figure 4.4), a COMBINING

OPERATION is defined as follows. Starting from the leaf processor nodes, each node

other than the root sends one packet upwards to its parent. If the processor node

is an internal processor node (other than the root), it must receive all the packets

from its children before sending its packet to its parent.

A DISSEMINATING OPERATION, the reverse of the combining operation, is defined

as follows. Starting from the root, each internal processor node sends a packet

downwards to each of its children. The processor node (other than the root) sends

a packet downwards after receiving another packet from its parent.

Definition 4.1 defines two efficient operations, combining and disseminating, in a processor

tree. The combining and disseminating operations are efficient because all the processors at

the same tree level can be processed in parallel and therefore the latency is only the time spent

in processor nodes along the critical path among all paths from leaves to the root. In addition,

the total number of sends (or receives) is only about the number of processors. In the global

43

protocol, collecting processor status can be done via a combining operation, while broadcasting

new values of T'" can be done via a disseminating operation.

4.1.2.2 Sparse Priority Distribution

In our model, load balancing becomes most complex when task priorities are sparsely dis-

tributed, i.e., when the total load of tasks with each priority is small. In this situation, if we still

use the above simple global protocol to balance the load, the total load of tasks in To (or T1) is

usually small. This implies that the GLB will soon need to update the value of 7r"'*. That is,

the GLB needs to set up new rounds (including broadcasting new r",=ax and collecting the load

status) very often, resulting in excessive communication.

The key idea for solving this problem is to group additional highest-priority tasks into To or

T 1 at the beginning of each round so that the GLB will be able to donate more tasks from these

sets and will not have to rebroadcast for the next round so quickly. Note that the technique of

grouping tasks will result in schedules which do not strictly obey the order of priorities- but as

mentioned in Chapter 2 the program correctness should never rely on priorities.

There is an important issue for grouping tasks: we do not want the total load of these

grouped tasks to be too small or too large.

" If the total load is too small, the system will soon need to set up a new round again. Thus,

the effect of grouping extra tasks does not help much in this case.

" If the total load is too large, the system may schedule many tasks with priorities lower

than 7.max.; this fails to follow priority well. For example, for BFS, scheduling many

tasks with low priority could end up wasting a significant amount of computation time.

So, the ;ompromise is that for each round we want the total load of grouped tasks to be

comparable to a load threshold Lth, = cLoah, where c is a large constant and Loh is the

aggregate overhead associated with setting up a new round among all processors. With this

compromise, we make the overhead (Lo0 h) less significant while keeping the total load of

extra grouped tasks as small as possible. Since setting up a new round requires a disseminating

operation to broadcast the new value of r max and a combining operation to collect all processors'

44

load status, the overhead L,.h is' O(p log p) sends/receives, which can be roughly predicted a

priori.

To be more specific about the compromise, we will, during each round, group the highest-

priority tasks whose total load is Lg,p = E(Lth4), if the total load of tasks in the whole system is

Ltot.-- fl(Lthr) and each task's grain size is O(Lth•). If the total load of tasks is LOW < Lthr,

then Lgp = Ltot.g because we can at most group tasks with total load Ltota. If the maximum

task grain size G... is larger than Lthr, then Lgrp = O(Gmaz) because we may need to group
the task with Gmax (e.g., when the task with the grain size Gma, has the highest priority).

In Section 5.2, we will design an efficient algorithm, called the parallel range selection

(PRS) algorithm, on a processor tree with a constant degree (_Ž 2); this algorithm can solve the

sparse priority distribution problem and satisfy the following two properties:

01 The algorithm only requires one combining operation and then one disseminating operation.

02 Each packet size is O(log2 p).

In the above problem, we allow the total load of grouped tasks, L27 p, to be in a range

E(LlhT), not just a fixed value (say Lthr), for the following two reasons.

* It appears to be hard to implement an efficient algorithm to group the highest-priority

tasks with a fixed total load Leh,, while satisfying Properties 0 1 and 02 simultaneously.

* It is not critical for Lgrp to be exact because the environment is changing. During the

period when we group tasks for To or T 1, the load status on each processor may have.

more or less, been changed due to new task scheduling and task creation.

4.1.2.3 Advanced Global Protocol

In this section, we will modify the simple global protocol by adding the PRS algorithm (to

be described in Section 5.2) with properties 01 and 02, such that the protocol can also cope

'If g(n) = O(f(n)), there exists some positive c for which g(n) ! cf(n) for all sufficiently large it.
If g(n) = Q(f(n)), there exists some positive c for which g(n) Ž_ ef(n) for all sufficiently large n.

Ifg(n) = E(f(n)), then g(n) = O(f(n)) and g(n) = Q2(f(n)).

45

with the problem of sparse priority distributions. In this advanced global protocol, the PRS

algorithm is used to group a set of additional highest-priority tasks at the beginning of each

load balancing round. These tasks are grouped into T1 (i.e., grouped into the T0 of the next

load balancing round in advance) so that we can simultaneously perform the PRS operation

and balance the tasks in the current To.

For the new design, the two sets To and T 1 are changed as follows. We define To = T' + T",

where T' is the set of tasks with priority 7r,,,x and T" is the set of tasks determined by the PRS

algorithm in the previous round. Similarly, we define T1 = T'1 + T'"', where T', is the set of

tasks with priority ir". - 1 (excluding those tasks in TO) and T'1' is the set of tasks determined

by the PRS algorithm in the current round. In fact, To' and T' are just To and T1 in the original

global protocol.

The new protocol is the same as the original protocol except for the following. At the very

beginning of a round, each processor moves tasks from T"' to T", reports processor status,

and starts doing the combining operation of the PRS algorithm. Since the status report also

requires a combining operation, we can combine the two combining operations in order to

reduce communication overhead. When the root of GLB receives all the reports, it will check

whether the total load of tasks in T', is already large enough (e.g. greater than Lth,). If SO,

we do not need to apply the PRS algorithm to group tasks for the next round. If not, we will

do the disseminating operation of the PRS algorithm to group more highest-priority tasks into

T'"'. This provides us with a chance to omit the disseminating operation when T', is already

large enough. We will show below that the PDC-WK scheduling algorithm can usually omit

the disseminating operation.

Before examining the case of the PDC-WK scheduling algorithm, we need to carefully

define the task grain size. We define the grain size of a task to be the average time between

the moment the task begins executing and the moment the corresponding processor requests

the next task from another processor, not just the amount of computation taken for the task.

For example, for the PDC-WK scheduling algorithm the grain size of each task is quite large

because we usually exhaust all the local tasks and their descendants before requesting a task

from other processors. For PBFS-GPQ, the grain size of a task is about the amount of time

for computing the task because the algorithm is very likely to schedule the next task with the

highest priority from another processor. Although the definition of task grain size is not so

straightforward, we argue that the scheduling programmer can help the application programmer

46

to calculate the task grain size.

Now, let us examine the case of the PDC-WK scheduling algorithm according to the above

definition. Since each node's grain size is very large, the total load in T, tends to be.very large

as long as T' has one node. Consequently, the disseminating operation is usually omitted, and

the protocol is almost the same as the original one in this case. Our experiments presented in

Chapter 6 also confirm that the disseminating operation is usually omitted for PDC- WK.

4.2 Maintaining Physical Lists

Since PLs are similar to priority queues, PLs can be maintained in the same way as priority

queues. A priority queue data structure often requires the following primitive operations.

INSERT(T,7r): Inserts a task T with priority r into the priority queue.

DELETE(T): Deletes a task T from the priority queue. Note that in the multilist scheduling
model if one task is scheduled from one PL, then we need to delete the instances of that

task from other PLs on the same processor too.

MAXPRI(): Returns the highest priority from the queue.

DELETrEMAX0: Deletes and returns the task with the highest priority in the priority queue.

As described in Section 2.2, since there may be some derived PL based on this PL with a

monotonically decreasing priority translation function, we also need to provide MINPRI and

DELETEMIN primitive operations. This is because the highest priority in the derived PL is the

lowest priority in the base PL.

The above operations are called DEQ operations 2 when they access/insert/delete a task with

the highest or lowest priority. (The MAXPRI, DELETEMAX, MINPRI, and DELETEMIN operations
2A "DEQ operation" is our preferred name for what others (e.g.. [971) have called a "deque operation-. i.e.. an

operation on a "double ended queue", which is accessed only at its two ends. We avoid the term "deque operation"

because this sounds like removal from a queue.

47

are always DEQ operations while the INsMu" and DELETE operations are sometimes DEQ

operations.)

l#or the PLs involved in a global scheduling subpattern, we may also need to provide other

operations required by the PRS algorithm (described in Section 5.2). They include:

THRESHPmI(Lth,), where Lthr > 0: If L(-oo) < Lth,, THRESHPRI returns -oo and L(-oc);

otherwise, there is a priority ir such that L(ir + 1) < Lth, < L(ir), and THRESHPRI returns

i" and L(ir), where L(7r) = Er(GC') for all tasks T with priorities 7r' > r. Note that we

can substitute irmsi, - 1 for -co, and ir,, + I for oc, where iri,, (Or-,,) is the highest

(lowest) priority which can be used. The PRS algorithm needs to use this operation to

obtain the priority distribution.

SPLrr(ir): Splits the priority queue into two, one part containing all the tasks with priority

7r' > 7r and the other part containing all the other tasks. The PRS algorithm will need

this operation to select all the tasks with priorities greater than or equal to a threshold

priority.

Here, we should note that if a global scheduling subpattern uses a derived PL based on

another PL and a priority translation function f, the derived PL needs to translate its priority

threshold 7r to the priority in the base PL in order to perform the SPLrr operation. Since the

function f only translates the priorities in the base PL to those in the derived PL, the programmer

needs to provide the inverse of function f to translate priorities from the derved PL to those

in the base PL. If function f is linear (as in the PDC-WK scheduling algorithm and factoring

scheduling algorithm), i.e., f(ir) = air + 5, the programmer only needs to specify the constants

a and b; the system, knowing that f is linear, can automatically find the inverse of function f.

Now, we want to see how to support the above operations for derived PLs and base PLs.

For a derived PL, we can perform all the PL operations based on the base PL and the priority

translation function (maybe including the inverse of the function). Por a base PL. we will,

in Section 4.2.1, propose an efficient priority queue supporting the above operations. This

proposed priority queue will satisfy the following two properties.

P1 The worst-case times of all the operations are O(log n), where n is the number of priorities

in the priority queue. (Note that the worst-case time of the operation MAXPRI or MINPRI

48

is only 0(1).)

P2 The amortized times of all the DEQ operations is 0(1). The amortized time [92] is defined

as the average time of an operation in a worst-case sequence of operations.

The first property PI implies that these operations are efficient for the worst case. The

worst-case time is important because it may shorten the response time for interprocessor

communication operations. For example, assume that the worst-case time is 0(n). Even if the

amortized time is much less than 0(n), the donation of a particular task may be significantly

delayed due to some operation requiring 0(n) computation time. Therefore, the performance

may become bad and unpredictable.

The second property P2 implies that the DEQ operations are optimal. This property is

also important because the DEQ operations happen in many cases. As mentioned above, the

operations, DELETEMAX, MAXPRI, DELETEMIN and MINPRI, are always DEQ operations. In

addition, some applications tend to insert/delete a task only at the two ends. For example, in

PDC-WK, when we schedule the deepest node locally, the node has the highest local priority,

but has the lowest global priority; when we schedule the node closest to the root from all the

(other) processors, the node has the highest global priority, but has the lowest local priority.

4.2.1 Data Structure of Priority Queue

Our priority queues are based on 2-3 trees [31, a kind of balanced search trees, which have the

following two basic properties.

* Each internal node has 2 or 3 children except that the root may have less than two children

in the case that there are less than two nodes in the whole priority queue.

e All leaves are at the same depth.

From the two above properties, for a 2-3 tree with height h > I, the minimum number of nodes

is 2 h and the maximum number of nodes is 3h. Thus, h = 0(rog n), where n is the number of

nodes in the tree.

49

1 k: the priority key in the node

Figure 4.5: A 2-3 tree.

In 2-3 trees, each node is associated with a priority key; each leaf node is also associated

with those tasks whose priorities are the same as the leaf's priority. These priorities are ordered

as follows. For each internal node v whose priority is denoted by 7r and whose ith child and ith

child's priority are denoted by vi and ri, there are tM.) ordering restrictions for these priorities:

(1) 7r < 'i for all i; (2) if i < j, all the priorities of nodes in the subtree rooted at vi must be

larger than those at v i (note that we say that vi is to the left of v,). An example is illustrated

in Figure 4.5. Because of the second restriction, for a given node and a given priority, we can

easily find the child of the node whose subtree may have the leaf with the priority. We can

use this technique to search for a leaf whose priority is adjacent to a given priority. Since the

priorities of leaves are all distinct, we store all tasks with the same priority in the same leaf.

In [3], Aho et al. provedthat the times of the operations INSERT, DELETE, DELETEMAX,

MAXPRI, DELETEMIN, MINPRI, and SPLIT are only O(log n) because each of these operations

only traverses a path between the root and some leaf at most downwards once and upwards

once. First, we search from the root to the leaf at which the operation of accessing, insertion,

deletion, or splitting takes place. Note that the DELETE operation does not need to search from

the root because we can let every task have a pointer to the leaf (with the same priority as the

task's) directly. After finding the leaf v, we perform the desired operation and rebalance the

tree if necessary to ensure that it is still a 2-3 tree. This requires only one upward pass.

In order to support the THRESHPRI operation, we need to let each node v in the tree have a

load variable L,,. (Note that this is similar to the augmented tree described in [28, Chapter 15].)

If P is a leaf, L, = Z GT for all tasks T in v; otherwise v is an internal node and L, = E L ,

for all children v' of v. An example is illustrated in Figure 4.6, in which the number in the

50

139

~T I

Figure 4.6: A 2-3 tree, showing load variable values.

right hand side of each rectangle (i.e., task) represents the grain size of the task, and the number

in the right hand side of each circle (i.e., tree node) represents the load variable value of the

node. So, whenever a leaf changes its load (e.g., a task is added to some leaf), we can just

use the above formula to update the load variables L, from the leaf to the root. In addition,

whenever reconfiguring the tree upwards, we may also need to calculate the load variables of

these touched nodes again by the above formula. Thus, the other operations still need O(log n)

time.

For the THRESHPRI operation with a given load threshold Lth,, if the total load is smaller

than Lth-, we stop and return the total load and the threshold priority -oc; otherwise, we

will search along the path from the root to the leaf with the threshold priority satisfying the

operation. For example, in Figure 4.6, if Lth, = 45, we will return the total load 39 and the

threshold priority -00; if Lth, = 15, we will search from the root to the leaf with priority 5

and return the load 20 (= 8 + 5 + I + 6) and the priority 5. In the latter case, starting from the

root, we repeatedly visit one node downwards until a leaf is reached such that for each visited

node v, the following condition holds: L, < Lth, <_ L, + L,,, where L, is the load variable of

v and L, is the total load of tasks in all the subtrees to the left of v (i.e., the total load of tasks

with priorities > ir', where wr' is the largest priority of the leaves in the subtree rooted at v). It

is trivial that-the above condition holds for the root, initially. For example, in Figure 4.6, for

the root, since L, = 0 and L, = 39, the above condition holds (with Lth, = 15). Then, when

visiting the node v on the path with the above condition, we can guarantee from the definition of

51

load variables that one of its children must satisfy this condition too. For example, for the root

in Figure 4.6, we can find the internal node L, (with priority 5) satisfying the above condition

(with Lth, = 15), since L, = 13 and L,, = 7. The reader can verify that the condition holds for

the leaf with priority 5, too. When the leaf v with priority 7r is reached, we can derive the result

L(w- + 1) < Lth, < L(7r) since L, < Lth, < L, + L, L, + L,, = L(ir), and L, = L(,-r + 1).

So, 7r is just the threshold priority for the function. From the above, the THRESHPRI operation

only needs to visit nodes O(log n) times.

Amortized Time

We will further modify the data structure such that the amortized times for DEQ operations

satisfy Property P2. For insertion/deletion, many iesearchers [47, 68] have proved that the

amortized time for rebalancing the tree is only 0(1). However, DEQ operations may still need

O(log n) time for the following two basic procedures: (1) to search downwards to the leaf at

which the access, insertion, or deletion takes place and (2) to update the load variables upwards.

So, in order to let the times for the DEQ operations still be amortized 0(1), we will modify the

data structure to reduce the computation times of the above two procedures for DEQ operations

to 0(1), as follows.

First, we put afinger at each of the two ends; i.e., the priority queue has two special fingers

pointing to the leaves with the highest priority and the lowest priority. (Note that putting fingers

on a search tree [38, 98] is a common technique for finding special nodes and their neighbors

more quickly.) Hence, for DEQ operations, we can directly find the leaf from the two fingers

without searching downwards from the root to the leaf. Thus, for each DEQ operation, the time

for searching the leaf is 0(1). In addition, with the same technique, the total worst-case times

of the MAXPRI and MiNPRi operations are only 0(1).

Second, we allow that nodes on the leftmost and rightmost paths do not need to have

accurate load status, where the leftmost (rightmost) path is the path between the root and the

leaf with the lowest (highest) priority. So, we do not need to update the load variables of the

nodes on both paths, as shown in Figure 4.7. Thus, for all the DEQ operations, we do not have

to update the load upwards, i.e., the computation time for updating tie load is 0(1). With this

modification, each THRESHPRI operation needs to update the load status of nodes on both paths

(upwards) first and then perform the original THRESHPRI operation. Thus, the new THRESHPRI

52

leftmost path/ rightmost path

0(1) O(log n) 0(1)

Figure 4.7: Updating load variables.

operation still needs O(log n) time.

4.3 Discussion

Although we have proposed some efficient techniques to implement the multilist model, it is StLil

very difficult to argue that our model achieves the ultimate goal: for all scheduling algorithms,

our general approach incurs no significant overhead. So, we will leave this problem open

and only argue that our general approach incurs no significant performance overhead at least

for the following four important scheduling algorithms: PBFS-GPQ, PBFS-R, PDC-WK. and

PDC-RR.

1. For the PBFS-GPQ scheduling algorithm, researchers in 1761 also used a centralized

mechanism to maintain the global priority queue. They did not consider the sparse

priority distribution situation because their task grain size was coarse enough and they

had relatively few processors. But, if their task grain size were small or if they had many

processors, we expect that our advanced global protocol could be used to solve their

problem. So, if a dedicated design for PBFS-GPQ followed our protocol, our general

system should perform almost as efficiently as the dedicated one.

2. For the PBFS-R scheduling algorithm, Karp and Zhang [571 used a randomized technique.

The corresponding scheduling scheme based on our model (as shown in Section 3.1.1 .2)

merges PLs into local VLs. Because of this locality, our model will perform almost as

efficiently as a dedicated design for PBFS-R.

53

3. For the PDC-WK scheduling algorithm, Wu and Kung [105] used a global pool to contain

all the nodes at the highest available tree level in the D&C computation tree. Whenever

some processor is idle, nodes in the pool can be donated to the idle processor. In fact,

this algorithm is the same as the simple global protocol except for using T I'(see Section

4.1 2.1). Note that the set To is equivalent to the global pool. In our system, the set TI

is used to make the transition from the current maximum priority to the next maximum

priority smoother. In fact, a dedicated design for parallel D&C may also benefit from

using this technique of adding the set T 1.

In the advanced protocol, we may require an extra combining and disseminating operation

when there is a sparse priority distribution. However, for PDC-WK, we can assign a very

large grain size to each node, such that the total load of tasks in T', is very large in most

cases. Since T" already has enough load, we do not need to use the extra disseminating

operation to group extra tasks into T"'. Thus, the amount of communication is almost the

same as the simple global protocol or a dedicated PDC-WK algorithm.

In addition, for PLs, the PDC-WK algorithm always inserts and deletes a task with the

highest priority or the lowest priority, as mentioned earlier. Thus, in our system, the

amortized times for these DEQ operations are only 0(1). In a dedicated PDC-WK

design, we can use a doubly-linked list to maintain these tasks such that the time for

each DEQ operation is only 0(1). Our system may still not be as good as the dedicated

design which uses a doubly-linked list, but it is only within a constant factor. In the

future, we may even provide several types of data structures (including doubly-linked

list) and allow programmers to choose their preferred data structures. From the above,

we can conclude that our general system incurs no significant performance overhead for

PDC-WK.

4. For the PDC-RR scheduling algorithm in Section 3.1.2.2, researchers in [34, 82, 44! all

used the following strategy: an idle processor requests a task from another processor in

a round-robin fashion. Section 4.1.1 showed that our system can judge from the priority

range information that a pre-selected processor does not need to report the status of its GL

to its destination processors, unless its destination processors become idle and explicitly

send task requests. Thus, the algorithm based on our model will perform almost as

efficiently as a dedicated PDC-RR design.

The above shows that our system, based on a uniform scheduling model, can efficiently

implement the above scheduling algorithms. In the past, it has been difficult for any single

54

scheduling system to efficiently support the scheduling algorithms for both parallel BFS and

D&C. For example, Manber and Finkel in [34] provided a parallel programming system for both

problems; however, they also pointed out that it is difficult for them to use a uniform framework

to efficiently support these algorithms. We believe that our system is the first system that can

do so.

55

56

Chapter 5

Selected Theoretical Topics

In order to develop our multilist scheduling system, we have also studied two theoretical

topics. This chapter will present their results. First, Section 5.1 will present the communication

complexity for parallel divide-and-conquer (D&C). The theoretical results in Section 5.1 were

previously published in [1051. Second, Section 5.2 will propose an efficient algorithm for the

parallel range selection problem that will be used in the implementation of our model (see

Section 4.1.2.2). Since the two topics in this chapter have no strong relation to each other or to

the rest of this thesis, the reader can skip this chapter without loss of continuity.

5.1 Communication Complexity for Parallel D&C

In this section, we will theoretically study the relationship between load balancing and commu-

nication cost for performing D&C computations on a parallel system. As described in Section

3.1.2, D&C is a common computation paradigm, in which the solution to a problem is obtained

by solving subproblems recursively. Each node in the tree corresponds to a problem instance,

and children of the node correspond to its subproblems. During the computation, each internal

(non-leaf) node goes through two phases. The first phase is the divide phase during which the

problem instance associated with the node is divided into subproblems. The second phase is the

combine phase during which the solution of the problem instance associated with the node is

derived by combining solutions of the subproblems associated with the node's children. After

57

its creation each leaf will perform some computation and return the results to its parent. At a

given time, nodes on a wavefront that cuts across all paths from the root to leaves can be active

in performing divide, combine, or compute operations. Along each path the wavefront first

moves down from the root to its leaf and then up from the leaf to the root.

At first glance, one might think that it should be straightforward to perform D&C in

parallel, because nodes on the wavefront can all be processed independently. However, if one

wants to achieve good load balancing between the processors, then parallelizing D&C becomes

nontrivial. In fact, doing efficient D&C on any real parallel machine has been a major challenge

to researchers [33, 34, 82, 891 for many years.

The difficulties are due to the fact that many D&C computations are highly dynamic in the

sense that these computations are data-dependent. During computation, a problem instance

can be expanded into any number of subproblems depending on the data that have been

computed so far. In fact, the trees of many D&C computations can be expected to be sparse

and irregular, and as a result, load balancing must be adaptive to the tree structure and must be

done dynamically at run time. This implies that computation loads need to be moved around

between processors during computation. The challenge is then to devise efficient scheduling

algorithms which can achieve good load balancing while minimizing the communication cost

for moving computations around.

In general there is a tradeoff between balancing computation loads and minimizing com-

munication costs. The results of this section quantify this tradeoff. In particular, this section

establishes lower bounds on the communication cost for any scheduling algorithm based on

how well it performs load balancing.

5.1.1 Summary of Results

5.1.1.1 Definitions and Notation

The tree of a D&C computation is called a (N, h, d)-tree, if

* N is the number of nodes in the tree,

58

"" h is the height of the tree, and

"• d is the maximal number of children of a node. (We assume that d is at least 2, to allow

parallel processing of the tree.)

A node is said to be at tree level 1 if it is the i-th node on the path from the root to the node.

Therefore, the root is at level 1, and the height of the tree is the maximal level number.

For the parallel system which will carry out the D&C computation, we assume that

"* p is the number of processors in the system, and

"* it takes one time step for a processor to expand a node, i.e., to perform the divide operation

for an internal node, or to perform the compute operation for a leaf node. For simplicity,

we assume that a processor takes no time to perform a combine operation.

When a node is expanded, zero or more children may be generated. More precisely, if a

node does not generate any children, the node is a leaf; if a node generates one or more (up to

d) children, the node is an internal node. Each newly generated node will in turn be expanded

by some processor in the future. A frontier node is a node which has been generated but has

not been expanded.

A scheduling algorithm for a D&C computation schedules nodes (i.e., frontier nodes) on

processors for expansion. We assume that scheduling algorithms cannot "lookahead". This

non-lookahead assumption is reasonable when dealing with irregular D&C trees. In this type

of tree, the number of children a parent may have (if any) is typically data-dependent and is

therefore not known a priori.

The parallel computation cost TA(H) of a scheduling algorithm A for a D&C computation

tree H is the maximum number of the nodes that any processor may expand. Since there are N

nodes and p processors, a lower bound on TA(H) is Tmtn = rN/pl. The parallel computation

cost TA of algorithm A is defined as the maximum T4 (H) for all (,V, h, d)-trees H.

The communication cost C4 (H) of a scheduling algorithm A for a D&C computation tree

H is the total number of cross nodes. A cross node is a node which is generated by one

59

processor but expanded by another processor. Note that the processur expanding a cross node

needs to receive information from the processor generating the node. Therefore, C4 (tH) is

a reasonable measure for capturing the interprocessor communication cost in performing the

divide phase of all the internal nodes. (A similar definition of communication cost is used by

Papadimitriou and Ullman in [741.) The communication cost CA of algorithm A is defined as

the maximum CA4(H) for all (N, h, d)-trees H.

5.1.1.2 Main Results

Theorem 5.1 For each scheduling algorithm Afor a parallel system of p proces-

sors, for each integer p', 0 < p' < p, and for each N, h, and d with the following

two restrictions,

S1. N > 3pd2h, and

S2. h > Flog, Ni + [logd pdh] + 1,

there exists some (N, h, d)-tree H for which at least one of the following two

properties is true:

Q1. the parallel computation cost of the algorithm is TA(H) _ N'/p';

Q2. the communication cost of the algorithm is CA(H) >_ C',

where N' = N - 3pd2h, C' = p'K, K = (d - l)h', and h' = h - [iog, Nvi -

[logd pdhl - 1.

Many D&C computations are expected to satisfy restrictions S I and S2. Since N is usually

an exponential function of h, restriction S I is easily satisfied in these cases. Restriction S2

roughly requires that N < dh- 2/ph. If a tree is perfectly balanced and each node has exactly (I

children, then N would be E(dh-I) instead. A perfectly balanced tree is easy for load balancing

because the subtrees of each node have the same computation load. Restrictions S I and S2

basically capture those interesting D&C computations with irregular trees. This class of D&C

computations are exactly those for which one finds it difficult to achieve good load balancing

without paying much in communication overheads. The lower bound on CA(H), stated in Q2

of the theorem, provides an explanation of why this must be the case.

60

The two properties Q 1 and Q2 in Theorem 5.1 can be expressed in terms of the quantities N,

h, d (associated with the D&C tree) and p (associated with the parallel system) as follows. One

can check that N' > (I -fN)N and h' > (1- Eh)h foreach positive f <v I and fh _< 1, provided
2logd ph+W0L1 3+ 6 -0d(and e Ci _, 21 gp~l, +-%

that h > ______+__+_-_ _and W :': _ N > (Note: if h >_ pA'+lOtd 3+6 --•d*N

then >_ 3>d" , fr, , h > N, then hh I> logd N+logdpdh+ 3 > [logdNJ+[logdpdh1+l =

h - h', i.e., h' > (1 - eh)h; ifN > 3 dzh . then N' > (1 - fv)N.) From this and the fact

that N' < N and h' < h, we note that N' and h' approach N and h respectively, when both

ev and fh approach 0. Therefore, QI and Q2 in Theorem 5.1 become TA(H) = Q(.V/p) and

C4 (H) = f2(pdh) for large h, when p' is close to p. Furthermore, we can slightly change the

theorem as Corollary 5.2.

Corollary 5.2 For each scheduling algorithmfor a parallel system of p processors,

for each positive fc < 1, which can be arbitrarily close to 0, there are values of

N, h, d, p, and ET(> 0), for which if the parallel computation cost is between .v

and (1 + ET) , then the communication cost must be at least (I - EC)Cu, where

Cu = pdh.

Proof. Letp > and d > -L. Then, letET= ,E . And, let N and h be
in the range as shown above with Ch = and fN = -L. One can check that

(1+ ET)- < (I+•T-' = N'(2p+-) < 'v and p'(d- 1)h' > (I - !)(I -)(I-
'Fh)C., (I -f-)'.>(I-EcC hep p-I1. Thus, ifvý < TA :S HI+fT)v

-AC - 3 ">(-¢)•wep=-

(< -=) the communication cost must be at least (I - fc)C,.

Theorem 5.1 also implies an important tradeoff result: if a scheduling algorithm wants

to achieve a good load balancing by parallel processing, then it must pay a high price in
communication cost. We can express the tradeoff between TA and C.A explicitly by showing a

lowerboundon theirproduct: TA.(CA+K). If(p*-l)) < C-A < pK*, whereO < p" _< p, then

by Theorem 5.1, TA must be at least N'/p*. Therefore, TA - (CA ±+ K) > (N'/p). *p" = .V' .-

Note that because of TA Ž_ N/p >_ N'/p this tradeoff is also satisfied when CA Ž_ ph. This

tradeoff result is summarized in Corollary 5.3 below.

61

Corollary 5.3 For any scheduling algorithm A for a parallel system of p pro-

cessors, for all N, h, and d with restrictions SI and S2 as defined in Theorem

5.1,

TA " (CA + >) Ž N'. K,

where N' and K are defined in Theorem 5. 1.

Theorem 5.4 A scheduling algorithm A can be devised to have the property that

the parallel computation cost is TA = Tmi,, and the communication cost is CA <

C,(= pdh) for any (N, h, d)-tree.

The algorithm satisfying Theorem 5.4 has the minimum parallel computation cost. By

Corollary 5.2, the algorithm is optimal with respect to the communication cost, since the

parallel computation cost of the algorithm is near optimal. These results also imply that the

lower bound on TA .(CA + tc) in Corollary 5.3 is tight when both ,v and fh are arbitrarily close

to 0.

Note that Theorems 5.1 and 5.4 are so formulated that their results are system-independent.

That is, the results are independent from the interconnection topology of the processors and

various control overheads such as data structure maintenance and reading/writing messages.

Therefore, our upper and lower bounds on CA are intrinsic to any parallel system. These

bounds give insights into actual communication cost in a real implementation, but exactly. how

they are related to the actual cost is a separate matter depending on the implementation. We

have investigated this actual cost by implementing the algorithm on a variety of interconnection

networks in [1041.

Section 5.1.2 describes the algorithm of Theorem 5.4. Section 5.1.3 presents a simplified

version of Theorem 5.1 and its proof to help the reading of Theorem 5. 1. A complete proof of

Theorem 5.1 is given in Section 5.1.4.

62

5.1.13 Relation to Past Work

There have been several approaches in performing parallel D&C. A simple approach (e.g., in

[7]) is to expand all the nodes above a fixed level on one processor and then distribute nodes

at this 'vel to other processors. Load balancing would be done poorly in this approach when

the tree is irregular. Another approach [89] is to distribute generated nodes, and to have each

processor perform load balancing based on load status information from its neighbor processors.

For this scheme, the communication cost can be very high in the worst case.

Recently, some researchers have made efforts to reduce communication overhead. A

popular approach [34, 82, 108] is based on the "donate-highest-subtree" strategy, in which an

idle processor will be given frontier nodes as near to the root as possible. Since a subtree

rooted near the top usually has many nodes and these nodes can all be expanded locally, this

strategy tends to reduce the amount of interprocessor communication. Ferguson and Korf [331

presented a D&C scheme with several processors scheduled first to a node and then to their

children. The idea behind their scheme is also that of distributing frontier nodes near the root

to. idle processors.

Although the methods described in the previous paragraph all attempt to reduce communi-

cation overhead, they do not use global information to balance the load. It turns out that the

communication cost for these methods can still be high in the worst case. For example, we

estimate that the communication cost is O(dh"d P) for Ferguson and Korf's scheme, and is

O(min(p~h. pdh 2)) for the scheme in [34] with round-robin scheduling.

In contrast, the communication cost for the scheduling algorithm here (Section 5.1.2) is as

low as O(pdh) (Theorem 5.4). This is partly due to the fact that our algorithm is able to make

effective use of global information (i.e., "global pool" in Section 5.1.2).

Most importantly, we note that none of the previous work has any lower bound results

on the communication cost for parallel D&C computations. It appears that our lower bounds

in Theorem 5.1 and Corollaries 5.2 and 5.3 are the first lower bound results for those D&C

computations whose tree structures are dynamic in the sense that the tree structure is determined

only at run time. Previous results on computation and communication cost tradeoffs such as

those in [51, 52, 74] deal with only static computation graphs, whose topologies are known

before the computation starts.

63

5.1.2 A Scheduling Algorithm and Upper Bounds

This section describes a new scheduling algorithm which can achieve the upper bounds in

Theorem 5.4 for both parallel computation cost and communication cost. The bounds hold for

any D&C computation, i.e., for any (N, h, d)-tree no matter how irregular it is.

Proposed Scheduling Algorithm

The scheduling algorithm uses a data structure, called a Global Pool (abbr. GP), to keep

track of frontier nodes at a particular tree level which have not been taken by any processor for

expansion. This level, identified by a variable gi, has the property that nodes at higher levels

have all been taken by processors. Every processor will try to take a node from the GP to work

on whenever it becomes idle. For the proof of Theorem 5.4, it suffices to assume that the GP

is maintained by some single processor. (See [1041 for a distributed scheme where the GP is

maintained by multiple processors.)

Initially, the GP contains only the root and the value of gl is one. The GP becomes empty

when all of its nodes at level gl have been taken by the processors. At this moment, all the

processors are requested to send in their frontier nodes at level gi + I in the next time step

when all the nodes at level gl + 1 have been generated. Then the GP is filled with this set of

new nodes, and gl is increased by one. This process is repeated until all the nodes have been

expanded.

The key idea of this algorithm is what each processor will do after it has taken a node

from the GP. The processor will do a depth-first traversal. Consequently, the processor can

exhaust all possible work locally before asking for a new node from the GP. As a result, we can

prove (below) that the communication cost can be as low as C,. While not related to parallel

computation cost and communication cost, an important advantage of this local depth-first

strategy is that it uses the minimum amount of memory.

In essence the scheduling algorithm described here uses a breadth-first scheme to distribute

big chunks of computations to processors, and has each processor after receiving a computation

follow the depth-first strategy locally. Therefore, the algorithm is a hybrid method, which

interestingly will do a purely depth-first traversal of the tree in the case that only one processor

64

is used.

Suppose that we define the parallel computation time to be the time (in terms of number of

time steps) when the last node is expanded by a processor. Then the parallel computation time

of the algorithm described here is at most [N/p + hi. To see this, we note that some processors

may become idle only when the number of nodes in the GP is smaller than the number of idle

processors. In the-worst case all the p processors may become idle at the end of some time

step, but at this time there is only one node in the GP. Thus, in the next time step, as many as

p - I processors may be idle. This situation can happen at most h times. Therefore, in the

entire D&C computation, additional h(p - 1) nodes could have been expanded if there were

no idle processors at any time step. This implies that the parallel computation time is at most

f(N + h(p- 1))/p] < [iV/p + hi.

Note that parallel computation time defited in the previous paragraph is different from

parallel computation cost defined in Section 5.1.1.1. Being able to take into account processor

waiting time induced by inter-node dependency, parallel computation time may be of more

practical interest than parallel computation cost.

However, to prove Theorem 5.4, we need to establish an upper bound on the parallel

computation cost of the algorithm. We will do this and also establish an upper bound on the

communication cost of the algorithm.

* frontier node

gi - [global pool

Figure 5.1: At most d frontier nodes at each level on a processor (d = 3).

Proof of Theorem 5.4. To achieve the [N/p] upper bound on parallel computation

65

cost, we will need to add some fair scheduling feature to the algorithm described

above. Whenever the number of nodes in the GP is smaller than the number of

idle processors, we will select the active processors for the next time step from

all the p processors in a fair way. That is, processors take turn to become active

using a round-robin scheme. This ensures at the end of any time step that the total

number of nodes expanded by a processor so far will not exceed that expanded by

any other processor by more than one. Thus when all the N nodes are expanded,

each processor will have expanded at most [N/pl. This proves that the parallel

computation cost of the scheduling algorithm with the fair scheduling feature is at

most fV/pl.

The communication cost of the algorithm is at most the number of frontier

nodes entering the GP as this represents the only interprocessor communication

activity for the entire algorithm. Since by using depth-first search each processor

has at most d local nodes at each level (as illustrated in Figure 5.1), the GP can

collect at most pd nodes each time that 9i increases. This will happen at most h

times, so the total number of nodes entering the GP is bounded above by C,, = pdh.

Note that in a practical implementation, the fair scheduling feature may not be used since

minimizing parallel computation cost may not be important. Without the fair scheduling feature.

the parallel computation cost would become fN/p + h]. However, the communication cost can

be reduced to p(d - I)h, if a processor right after expanding a node will schedule one child, if

any, of the node for expansion at the next time step.

The scheduling algorithm described in this section is being used as a basis for developing

a parallel programming model for D&C computations. To obtain practical insights, we plan to

implement a programming system based on the model on the 26-host Nectar network system

[61 developed at Carnegie Mellon University.

66

5.1.3 A Simplified Version of Theorem 5.1

This section presents Theorem 5.5 (see below), which is a simplified version of Theorem 5.1

dealing with only two processors. A relatively simple proof of Theorem 5.5 is given. This

simple proof captures the essence of a more complicated proof of Theorem 5.1 given in Section

5.1.4. It is advised that the reader read this simple proof first to understand the ideas.

Theorem 5.5 For each schedult 'g algorithm A for a parallel system of two pro-

cessors, for each N, h, and d with the following three restrictions,

S1. N > 3dh,

S2. h > 'logj N]'+ 2, and

S3. h - [logd NJ - 2 is an even integer,

there exists some (N, h, d)-tree H for which at least one of the following two

properties is true:

T1. the parallel computation cost of the algorithm is TA(H) >_ N - 3dh;

T2. the communication cost of the algorithm is CA(H) >_ h'(d - I),

where h' = (h - [log, NJ - 2)/2.

Note that restrictions S I and S2 correspond to those in Theorem 5. 1. Restriction S3 is for

a minor technical convenience, namely, ensuring that h' an integer.

Theorem 5.5 implies, for example, that if the communication cost is small (in the sense that

T2 does not hold), then the parallel computation cost must be large (in the sense that T I holds).

In particular, if CA(H).< h'(d - 1) and if 3dh «< N, then the parallel computation cost will

be close to N.

Proof of Theorem 5.5

67

Suppose that we are given a scheduling algorithm A for performing a D&C computation on

processors P1 and P2. For algorithm A, we will prove the existence of a (N, h, d)-tree H for

which at least one of T I and T2 must hold.

By playing an adversary game with algorithm A, we will construct the tree by growing it

from the root one step at a time. A time step consists of two phases,. node scheduling phase and

node expansion phase. In the node scheduling phase, algorithm A schedules a node or no node

for each processor to execute. Then, in the node expansion phase, these scheduled nodes are

expanded. In this phase we will determine the number of children each scheduled node will

generate.

We will first define a special class of subtrees which will be used to describe some sufficient

conditions under which a tree can grow to a (N, h, d)-tree. We will then give the main part of

the proof including a description of the tree construction procedure.

HFD-Subtre

Definition 5.1 At any given time during the tree construction, a High-and-Full-

Degree subtree (abbv. HFD-subtree) is a subtree, which is rooted at a node at

or above level h - [logd Ni, and which has been constructed using the following

rules:

Al. nodes above level h generate d children; and

A2. nodes at level h generate no children.

Note that rules A l and A2 imply that a node which is above level h and has no children must

be a frontier node.

Lemma 5.1 At any given time during the tree construction, if-the current tree

satisfies the following four properties:

68

11. the total number of generated nodes is at most N - h - d (generated nodes

include the root);

12. the height is at most h;

13. the degree of any node is at most d; and

14. the tree contains an HFD-subtree,

then a construction procedure can be devised to grow the tree to a (N, h, d)-tree:

Proof. We first note that in the HFD-subtree of 14 there exist nodes which are

above level h and have no children. Otherwise, the subtree would have been "fully

grown" to level h, according to rules Al and A2. Since its root is at and above level

h - Flogd N], this fully grown HFD-subtree would have at least drI, Ni (> .V)

nodes. This contradicts I1. As noted above, those nodes in the current HFD-subtree
which are above level h and have no children must all be frontier nodes.

Let H, be the current tree. We will identify a set of "padding nodes" which

can be added to H, to make it a (N, h, d)-tree.

current nodes 1+ :Nnoe

padding nodes

at most h nodes on the path
(a) (b)

Figure 5.2: Growing the current tree to a (N. h. d)-tree.

If H, has height less than h or degree less than d, we will grow it by extending

the current HFD-subtree from one of its frontier nodes which are above level h. Let

v be this frontier node, as shown in Figure 5.2. We generate d children for 1, and

create a path from v to a node at level h, as shown in Figure 5.2 (a). The resulting

tree, called H2, has height h, degree d, and no more than (N - h - d) + d + h = N

nodes.

If H2 has less than N nodes, we will pad it with nodes in the fully grown HFD-

subtree which are reachable from tht current frontier nodes and other padding

nodes, as illustrated in Figure 5.2 (b). Since the fully grown HFD-subtree has

69

at least N nodes, it has sufficient nodes which can be added to H2 to make it a

(N, h, d)-tree.

After having identified all these padding nodes, we now have a "blueprint for

a construction procedure to follow. More precisely, the construction procedure will

just generate all those padding nodes in the dark region in Figure 5.2 (b). []

Main Part of Proof of Theorem 5.5

The tree construction procedure consists of three stages. Each stage uses an independent

set of rules in constructing the tree.

T 2 2h'+2

h Areal +
/ /. Area 2 t Fogd jNI

Figure 5.3: Two areas in the constructed tree.

In stage 1, we expand each node with exactly d children. Stage I terminates at time T,

when a total of 2h' or 2h' + I nodes have just been expanded. (Note that at this time the tree is

completely inside area I of Figure 5.3.) Since the number of fronuer nodes increases by d - I

each time when a node is expanded, there are exactly 2h'(d - 1) + I or (2h' + 1)(d - I) + I

frontier nodes at time T1. Without loss of generality, we assume that processor P, has generated

at least h'(d - 1) frontier nodes.

Stage 2 starts right after T1. In this stage every node above level h expanded by processor

P, will have d children, while every node at level h or expanded by processor P2 will have

no children. Stage 2 terminates at time T,. when one of the following two conditions becomes

true:

C1 At least h'(d - 1) cross nodes have been scheduled.

C2 At least N - h - 2d nodes have been generated.

70

The following shows that CI or C2 must become true sometime, i.e., T2 exists. Recall that

by the end of stage 1 processor P, has generated at least h'(d - 1) frontier nodes. In stage

2 processor P1 will generate nodes in the subtrees rooted at those frontier nodes which are

still in P1 . For each of these subtrees, since its root is in area I of Figure 5.3, the subtree can

have at least N - h - 2d nodes unless some of these nodes are moved to processor PA from

processor P1. If CI does not hold, then fewer than h'(d - 1) nodes can be moved from P, to

P2 . Consequently, some subtree will have at least N - h - 2d nodes, and thus C2 will be true.

Stage 3 staits right after time 7T,. Lemma 5.2 below shows that properties 11 -14 of Lemma

5.1 hold for the tree at time T2. In stage 3, we follow the procedure described in the proof of

Lemma 5.1 to grow the tree to a (N, h, d)-tree.

Lemma 5.2 At any time in stage I or 2, including time 71,, the tree satisfies

properties 11-14 of Lemma 5.1.

Proof. It is obvious from the descriptions of stages I and 2 that [2 and 13 are

satisfied. For I1, we note that the total number of nodes generated in stage I is at

most (2h' + I)d + 1, and thus at most V - h - d by restriction SI of Theorem 5.5.

In stage 2, 11 obviously holds when C2 is not true. Suppose that C2 becomes true

at time T2. Since the tree has no more than V - h - 2d nodes in the previous time

step and since at most d nodes can be generated (in processor PI) in one time step.

there are at most N - h - d nodes at time T,.

Property [4 clearly holds for stage I by examining its description. It remains to

prove that [4 holds for stage 2. The proof is similar to the earlier proof of the fact

that C I or C2 must become true in stage 2. Recall that in stage I processor P, has

generated at least h'(d - I) frontier nodes. We note that any of these subtrees rooted

at these nodes is an HFD-subtree if the subrree does not contain any expanded cross

node. Since the number of cross nodes expanded (not just scheduled) through time

7,. is less than h'(d - I), one of these subtrees must be an HFD-subtree. Note that

if C2 becomes true at time 7", (in the node scheduling phase), the node scheduled

has not been expanded. "]

71

To complete the proof of Theorem 5.5, we observe that if C1 becomes true at some time in

stage 2 or 3, it will remain true for the rest of the tree construction process. Therefore property

"T2 of Theorem 5.5 will hold for the final (N, h, d)-tree.

Now assuming that C I never holds at any time in stage 2 or 3, we want to show that property

Ti of Theorem 5.5 will hold for the final (N, h, d)-tree. We derive an upper bound on the total

number of nodes expanded by processor P2. The upper bound is the sum of four terms C,, U2,

U3 and U4. In stage 1, processor P2 has expanded at most U, = 2h' + I nodes. At time TI,

processor P2 can have generated up to (h' + 1)(d - I) + I frontier nodes, each of which can be

expanded at most once by processor P2 in stage 2 or 3. It is also possible for processor P2 to

expand nodes which are generated by Pi but subsequently moved to P2. The total number of

these nodes is at most C(A(H) < U3 = h'(d - 1). Moreover, to take care of the nodes generated

after T2 in stage 3, processor P2 may expand up to U4 < h + 2d nodes. Therefore the total

number of nodes expanded by processor P2 is at most U = U, + U2 + U3 + U4 < 3dh. This

implies that processor P1 has expanded at least N - U = N - 3dh; that is, property TI holds.

5.1.4 Proof of Theorem 5.1

Suppose that we are given a scheduling algorithm A for performing a D&C computation on a

parallel system of p processors. For algorithm A, we will prove the existence of a (.N. h. d)-tree

H for which either only p' processors are active for expanding most of nodes (at least .V' nodes)

or at least C' nodes are moved between processors to balance their computation loads. For the

former, the parallel computation cost will be high, i.e., TA.(H) > N'/p' (property Q I). For the

latter, the number of cross nodes will be large, i.e., CA(H) > C' (property Q2).

By playing an adversary game with algorithm A, we will construct the tree by growing it

from the root one step at a time. The definition of time step is the same as that in the proof of

Theorem 5.5.

We will give some more definitions in Section 5.1.4.1 and then give the main part of this

proof in Section 5.1.4.2. All the related lemmas are in Section 5.1.4.3.

72

5.1.4.1 Definitions

To help derive a lower bound on the number of cross nodes, we introduce the following relation

between subtrees.

Definition 5.2 A set of subtrees is processor-or-ancestry independent (abbr. PA-

'4dependent) iffor each pair of subtrees in the set at least one of the following two

properties is satisfied:

1. Processor Independence: the roots of these two subtrees are generated on

different processors;

2. Ancestry Independence: neither is a subtree of the other. That is, there is no

ancestor-descendant relationship between the two roots.

Note that for two PA-independent subtrees rooted at nodes r, and r,, if node r, is an ancestor

of node r 2, then both nodes must be generated on different processors. This implies that there

must exist at least one cross node on the path from node r, (inclusive) to the parent (inclusive)

of node r2. Therefore, from this property, if there are k PA-independent subtrees each of which

has at least one expanded cross node, then there are at least k expanded cross nodes in the tree.

This is shown in Lemma 5.3 (in Section 5.1.4.3).

Definition 5.3 An HFDC-subtree is an HFD-subtree (as defined in Definition 5. I)

or a subtree with at least one cross node already expanded. If the root o] an HFDC-

subtree is generated on processor P, the subtree is called an HFDC-subtree on

processor P.

By Lemma 5.3 and Definition 5.3, if there are k PA-independent HFDC-subtrees and fewer

than k expanded cross nodes, then there exists an HFD-subtree, as shown in Lemma 5.4. We

will use this lemmna to show the existence of an HFD-subtree during some periods of the tree

cqttruction procedure.

73

Staglo =
Apply the following four rules:

RI. Nodes in area I (shown in Figure 5.5) will generate d children.

R2. Cross nodes in areas 2 and 3 (shown in Figure 5.5) will not generate any children.

R3. Non-cross nodes in areas 2 and 3 (excluding level h) will generate d children.

R4. Nodes at level h will not generate any children.

Repeat rules R 1 -R4 until time T, when any of the following three conditions holds:

CI. For some p' processors, at least h' non-cross nodes have been expanded on each processor.

C2. At least C" cross nodes have been scheduled.

C3. At least N - (pd + d + h) nodes have been generated.

Stage 2 (continued from time T, when C I holds) ==

Find a set r of p' processors with the following two properties:

B1. There are at least C' PA-independent HFDC-subtrees in F.

82. There are at most h' non-cross nodes expanded on each of the other p - p' processors

in the set F.

Apply the following three rules:

R5. Nodes (excluding those at level h) in F will generate d children.

R6. Nodes in I will not generate any children.

R7. Nodes at level h will not generate any children.

Repeat rules R5-R7 until time 7T2 when either of the following two conditions holds:

C4. At least C' cross nodes have been scheduled.

CS. At least N - (pd + d + h) nodes have been generated.

Stage 3 (continued from time T, when C2 or C3 holds or from time 7T, when C4 or C5 holds.) =

Use the construction procedure described in the proof of Lemma 5.1 to grow the tree

to a (N, h, d)-tree.

Figure 5.4: Tree construction procedure.

T 7 F1ogd Pdhl

I Areal +
h Area 2 + h'+ I

1 Area 3 ~ F19d N 1

Figure 5.5: Three areas in the constructed tree.

74

5.14.2 Main Part of Proof of Theorem 5.1

The tree construction procedure consists of three stages. Basically, this procedure, summarized

in Figure 5.4, is similar to that in Section 5.1.3. The main difference is that in stage I of this

procedure we uses more sophisticated rules to prove a better lower bound of the number of

cross nodes. (Note that if h >» loge N, p = 2, and p' = 1, the lower bound of communication

cost in this theorem is approximately twice as large as that in Theorem 5.5.)

In stage 1, we will repeatedly apply rules R I-R4 (in Figure 5.4) until time T, when one

of the conditions CI-C3 holds. Rules RI-R4 ensure that each subtree rooted in area I or 2

is always an HFDC-subtree because in constructing the subtree either rules A l and A2 are

followed (using RI, R3, and R4) or some cross nodes are expanded (using R2). Basically, the

procedure in stage I attempts to produce at least C' PA-independent HFDC-subtrees on some p'

processors (property B 1) while preventing each of the other p - p' processors from expanding

more than h' non-cross nodes (property B2). (Recall that in the proof of Theorem 5.5 subtrees

rooted at frontier nodes at time T, are PA-independent HFDC-subtrees.)

no" - p processors -o
Tim e N 'p,. 10_• ..

T,-2 2 holds, but C I does not.

= :Each processor expands at least h' non-cross nodes.
T1-I 2 holds. but CI does no t :Each processor expands fewer than h' non-cross nodes.

Ti -B2 and C! hold.

Each processor expands exactly h' non-cross nodes.

Figure 5.6: Around the time when condition C I becomes true.

If condition Cl holds at time T1, then from Figure 5.6 we can find a set r of p' processors

for which condition Cl and property B2 hold. According to Lemma 5.5, there are at least

,.(= (d - 1)h') PA-independent HFDC-subtrees on each processor vhich has expanded h'

non-cross nodes. So there are at least C'(= p'.) PA-independent HFDC-subtrees in F at this

ti, ne. Therefore, property B I holds, and we are ready for stage 2.

In stage 2, we will repeatedly apply rules R5-R7 until time T, when condition C4 or C5

holds. (Note that these rules are exactly the same as those of stage 2 in Section 5.1.3.) According

to property B 1, initially, there are at least C' PA-independent HFDC-subtrees in r. In stage

75

2, these subtrees continue to be HFDC-sLbtrees, because either rules A l and A2 are followed

(using R5 and R7) or some cross nodes are expanded (using R6). In addition, by rule R6, the

set r of the other p - p' processors will not generate any new nodes.

Now, we want to show that one of the conditions C2-C5 must become true at time T, or

T2. According to Lemma 5.6 (in Section 5.1.4.3), at any time in stage I or 2 properties 11-14 of

Lemma 5.1 hold; so, at any time in stage I or 2 the tree will be able to grow to a (N. h, d)-tree

by Lemma 5.1. Hence, if C2 or C4 never hold, C3 or C5 becomes true.

Stage 3 starts right after oie of the conditions C2-C5 becomes true. (If C2 or C3 holds at

TI, this implies that stage 2 is empty.) Since Lemma 5.6 also shows that properties 11-14 of

Lemma 5.1 hold for the tree at time T, or T,2, in stage 3 we will follow the procedure described

in the proof of Lemma 5.1 to grow the tree to a (N, h, d)-tree H.

To complete the-proof, we observe that if CA(H) > C' it will remain true for the rest of the

tree construction process. Therefore property Q2 of Theorem 5.5 will hold for H.

Now, assuming that CA(H) < C', we want to prove that property QI holds for H. Since

C2 and C4 never hold, either C3 will become true at time T, or C5 will become true at time

T2. First, suppose that condition C5 becomes true at time T2. To prove that property Q I

holds in this case, we will derive an upper bound on the total number of nodes expanded in

F. The upper bound consists of five terms U1, U,, U3, U4, and U . Assume that there are

C, < U, = C' cross nodes expanded in F in stage 1. In stage 1, the processors in r have

expanded at most U2 = (p - p')h' non-cross nodes due to property B2. These nodes expanded

in stage 1 will generate at most U3 = ((p - p')h' + C1)d frontier nodes in F at time TI, each of

which can be expanded at most once in F. After time T1, it is also possible for the processors

in F to expand nodes moved from the processors in 1. The total number of these nodes is

U4 < CA(H) - C1 . Moreover, to take care of the nodes generated after T,, processors in F

may expand up to U5 < pd + d + h nodes. Therefore, the total number of nodes expanded in

r is at most U = U, + U2 + U3 + U4 + U5 < 3pd2 h. This implies that the processors in F have

expanded at least N - U = N - 3pd2h nodes; therefore, TA(H) > (N - 3pd2h)/p' > V'/p',

i.e., property Q I holds.

Suppose that condition C3 becomes true at time Tj. Since condition C I does not hold in

stage 1, we can find a set F of p' processors with property B2 (see Figure 5.6 also). Since stage

76

2 is empty for this case, we can let time T2 be the same as T1. Thus, we can use the same

technique as above to prove that property Q I holds. I]

5.1.43 Relevant Lemmas

Lemma 5.3 Suppose that there are k PA-independent subtrees at some time during

the computation. If each of these subtrees has at least one expanded cross node,

then the total number of expanded cross nodes in the whole tree constructed so far

is at least k.

Proof. This proof is not trivial because among these subtrees those with ancestry

relationship may contain the same expanded cross node.

T,

0 expanded cross node

T 2

T1, '2,, T3. 1 :PA-independent subtrees.

Figure 5.7: Expanded cross nodes corresponding to PA-independent subtrees.

In this proof, we will prune the k PA-independent subtrees one by one under

the restriction that the subtree being pruned contains no other subtrees which have

not been pruned yet. (For the example illustrated in Figure 5.7, we can prune the

subtrees in the order: T4, T3, T2, and T1.) For this proof, it suffices to prove that

each pruned subtree has at least one expanded cross node.

Initially, the first pruned subtree obviously has at least one expanded cross node

by the assumption of the lemma. As mentioned in Section 5.1.4.1, for any two

PA-independent subtrees T and T' rooted at nodes r and r' respectively, if r is an

ancestor of r', there must exist at least one expanded cross node on the path from r

77

Area I

Area 2

Gene ted on a single Processor U Non-cross node

Area 3

Figure 5.8: In stage 1, any non-cross node's ancestors in area 2 must have been generated on

the same processor.

(inclusive) to the parent (inclusive) of r' due to processor independence. Therefore,

if we prune T' at r', T still has at least one expanded cross node. Hence, after
we prune each subtree under the above restriction, each of the remaining subtrzes

will still have at least one expanded cross node. This implies that the next pruned

subtree also has at least one expanded cross node. So, each pruned subtree has at

least one expanded cross node.

Lemma 5.4 At some time, if there are k PA-independent HFDC-subtrees and fewer

than k expanded cross nodes, there exists an HFD-subtree.

Proof. Assume that there exists no HFD-subtree. Thus, each of these PA-

independent HFDC-subtrees has at least one expanded cross node according to

the definition of HFDC-subtree. By Lemma 5.3, there are at least k expanded cross

nodes. This is contradictory to the assumption of the lemma.!]

Lemma 5.5 In stage 1, if a processor has expanded h' non-cross nodes, then there

are at least te PA-independent HFDC-subtrees on the processor.

78

Proof. As mentioned in Section 5.1.4.2, each subtree rooted in area I or 2 is always

an HFDC-subtree in stage 1. Thus it suffices to prove that at least 1 nodes with

ancestry independence in areas I and 2 will be generated on the processor after h'

non-cross nodes have been expanded. By rules R I -R3, for any non-cross node, all

of its ancestors in area 2 (with h' + I levels) must be non-cross nodes as shown in

Figure 5.8. So, all the nodes generated by the first h' non-cross nodes must be in

areas 1 and 2. Since each of the h' non-cross nodes will generate d children and

can remove at most one ancestor, these non-cross nodes will, in total, generate at

least (d - l)h'(= K) nodes with ancestry independence. -

Lemma 5.6 At any time in stage I or 2, including time T, or !,, the tree satisfies

properties 11-14 of Lemma 5.1.

Proof. It is obvious from rules RI-R7 that 12 and 13 are satisfied. In addition, it

is also obvious that I I holds before condition C3 or C5 becomes true. Consider

the first time step when at least N - (pd + h + d) nodes have been generated (i.e.,

condition C3 orC5 holds). Since the tree has no more than N - (pd + h + d) nodes

in the previous time step and since at most pd nodes will be generated in each time

step, there are at most N - h - d nodes in the current time step. In the rest of this

proof, we will show that 14 always holds (i.e., there always exists an HFD subtree)

in each stage.

In stage 1, all the nodes in area I will generate d nodes by rule R 1. So, before

all the nodes in area I have been expanded, there must exist one frontier node in

area 1, of which the subtree (with only one node) is an HFD-subtree. After all the

nodes in area I are expanded, there are at least dr°ogd ,,pd•h > pdh > (" subtrees

rooted at the top level of area 2. Obviously, these subtrees are PA-independent.

They are also HFDC-subtrees because each subtree rooted in area I or 2 in stage

I is always an HFDC-subtree as described in Section 5.1.4.2. Since the number

of expanded cross nodes is always less than C' (due to condition C2), there has

always been an HFD-subtree up to time T, by Lemma 5.4. Thus, we can conclude

that there always exists an HFD-subtree in stage I.

In stage 2, initially, there are at least C' PA-independent HFDC-subtrees in r

(property B I). These subtrees will continue to be HFDC-subtrees in this stage

79

as described in Section 5.1.4.2. In stage 2, due to condition C4 the number of

expanded cross nodes is always less than C'; so, there always exists an HFD-

subtree by Lemma 5.4. 0

5.2 Parallel Range Selection

Selection [17, 28, 42] is a very common operation, which we define as follows.

Given a set of N elements each containing a key, and given an integer value .11,

1 < M < N, select M elements that have the smallest key values'.

(Note that when applied to our multilist scheduling system, elements are equivalent to tasks

and keys are equivalent to priorities.)

For the parallel selection problem, some efficient algorithms have been designed by other

researchers [16, 77], but they usually do not try to minimize the number of critical-path

sends/receives 2. For example, we estimate that the parallel selection algorithm [161 (a

straightforward parallel design of [421) requires an average of O(log p log V) critical-path

sends/receives. However, in a network-based multicomputer, we want to minimize the number

of critical-path sends/receives while using moderately large packets, because a network-based

multicomputer has the following characteristics. First, each send/receive incurs a significant

amount of overhead, e.g., a couple of milliseconds over Ethernet or about 200 microseconds

[27] on Nectar, as opposed to tens of nanoseconds per instruction. Second, a packet with

moderate size does not incur a significant amount of overhead. For example, sending a packet

with a few kilobytes is only a small number of times longer than that for a single word.

If we wanted to reduce the number of critical-path send/receives to O(log p) while using

'Sometimes, the definition of selection is to select only the element with the M-th smallest key. However, a

selection algorithm which can find the M-th smallest key 7r usually can identify the M elements with priorities

< -r.
2Here, we view a "path" as a sequence of sends/receives performed on any corresponding sequence of

processors. The path with the largest number of sends/receives will be called the critical path. Sends/receives

on the critical path are called critical-path sendsheceives. The time for a computation is at least the number of

critical-path sends/receives times the average time for each send/receive.

80

packets of unlimited size, we could use a naive algorithm in which each processor sends a

packet of M smallest-key values in order to construct the set of M smallest key values of the

entire system. Since M is independent of the number of processors and can be an extremely

large number, this algorithm may have poor performance. But if we limited the packet size to

a moderate size (say, a polynomial function of log p), it would be very difficult to reduce the

number of critical-path sends/receives to O(logp).

Fortunately, as explained in Section 4.1.2.2, in our multilist scheduling system, it is not

critical for the selection problem to select exactly M elements. It is good enough to select

9(Ml) elements. Thus, we can relax the selection problem to the following:

Given a set of N elements each containing a key, and given an integer value

M, I < M < N, select N.,,, elements that have the smallest key values, where

Nei = E(M), e.g., Ml < N,,V <_ 2M.

This problem is called the range selection problem because the value ,V,,, is in a range 0(0 .11,

not just a fixed value, M.

By taking advantage of this relaxation, we-can devise a very efficient parallel range selection

(PRS) algorithm which minimizes the number of critical-path sends/receives (by using only

one combining operation and then one disseminating operation, as defined in Definition 4. 1),

while keeping the packet size moderate (O(log2 p)). First, we will summarize our theoretical

results concerning the PRS algorithm, and then we will present more details.

5.2.1 Summary of Results

5.2.1.1 Assumptions

Our new PRS algorithm is based on a tree-shaped network of processors. For simplicity of

discussion, we make two assumptions about the network as follows.

* The processor tree is a complete binary tree.- This implies that the leaf processors are all

at the same bottom level q of the processor tree, where q is Ig p and p is the number of

81

leaf processors.

* All elements are distributed over leaf processors, not over internal processor nodes. For

example,.if internal processor nodes are embedded in leaf processors, as in the example

in Figure 4.4, we can say the internal processor nodes have no elements.

Without loss of generality, we also assume all the elements have distinct key values for the

range selection problem. If elements are allowed to have the same key values, we can redefine

the key value in order to make each element have a distinct key value, as follows. For an

element on a leaf processor Pj, if the original key value is 7r and the element is the jth element

with the key value of 7r on Pi, we can use a compound key (Ir, i,j) as its new key: -r is the

primary key, i is the secondary key, and j is the tertiary key.

5.2.1.2 Main Result

Theorem 5.6 Given a processor tree with the above assumptions, an algorithm

can be devised to solve the PRS problem and to satisfy the following properties.

U1 The algorithm only requires one combining operation and then one dissemi-

nating operation (see Definition 4.1).

U2 Each packet size is O(lg2 p). More accurately, if p > 2, each packet has

at most r[lg2 p1 + I items each containing one load value (representing an

element count) and one key value, where t = I/(I - 6/2), 6 = I /(Ig e Ig p),

and e is the base of the natural logarithm, approximately 2.718. Note that if

p -+ oc then 6 - 0 and K -- 1.

U3 The total time is O(log3 p + (log p)(log,V)), if we make the following two

assumptions:

"* It takes 0(1) time to send each piece of data.

"* Each (leaf) processor maintains elements based on the priority queue

described in Section 4.2. -by letting the grain size of each element (cor-

responding to a task) be one.

82

The PRS algorithm that satisfies these properties is very efficient for the following reasons.

Concerning the first property, using only one combining operation and one disseminating

operation is quite efficient because the number of sends/receives and the number of critical-

path sends/receives are both optimal. This advantage is especially important on a network-based

multicomputer, where each send/receive incurs significant overhead.

The second property shows that the packet size is moderate. Assume that each item requires

8 bytes. Then, for example, if p is 1, 000, the packet size is about I kilobyte; if p is 1, 000. 000,

the packet size is only about 4 kilobytes. In many networks, the time for sending a packet with

4 kilobytes is only a small number of times longer than that for a single word (see [27]). From

the above two properties, we conclude that our PRS algorithm is very efficient in network-based

multicomputers.

The third property shows that the time complexity for a parallel system with fast commu-

nication, like the CM5 [991, is also quite low.

In the remaining sections, we will design a PRS algorithm which satisfies the above three

properties, UI-U3. This algorithm uses only one combining operation and one disseminating

operation (property UI), in which each packet size satisfies property U2. The combining

operation, described in Section 5.2.3, combines the key value distribution lists (defined in

Section 5.2.2) of all the processors into the root processor. Note that the data of these lists

roughly represent the key value distributions; these lists can be merged without too much loss

of accuracy. In Section 5.2.3, we will also show that on the root processor we can select a

key value threshold rth, from the final combined list (which roughly represents the key value

distribution of the entire system), such that the total number of elements with priorities < -,h,

is OI(M). After the combining operation, we can simply disseminate -rhr to all the processors

to select all elements with priorities < rth,. Thus, this algorithm solves the PRS problem. In

Section 5.2.4, we will also prove that the algorithm satisfies the third property U3. Finally,

in Section 5.2.5, we will discuss the case in which the degree of processor tree is a constant

(integer) more than two, and also describe how the algorithnm can be applied to our multilist

system, as described in Section 4.1.2.2.

83

5.2.2 Key Value Distribution Lists

In our PRS algorithm, each processor Pi needs to generate a list Ai which can roughly represent

the key value distribution in the whole processor subtree rooted at Pi. We will call such a list a

key value distribution list or a KVD list. A KVD list has several items and each item contains

a pair of values: a key value and a load value. For analyzing a KVD list, we will use the

following notation:

" mi,: denotes the number of items in the KVD list A,.

"• (rij, Lij): denotes the jth item in the KVD list Ai, where I < j < mi. Here, 7rj and L,,

are the key value and the load value of this item, respectively.

"• IX: denotes the processor subtree rooted at Pi.

"* ni(7r): denotes the number of elements with the key value r in the processor subtree r,.

"* NiV(r): denotes E,,<, ni(r').

For simplicity, if the root processor is Pt, we will use n(7r) and N(,r) to stand for nrt(7r.

and NVt(ir), respectively.

From the above definition of N.i(r), we will have the following basic properties:

"* NA(o) is the total number of elements in the processor subtree r, while ,V,(-oc) is zero,

where oc (-oo) is a value higher (lower) than any key value which can be used.

"* Vi~r1) < Ni(7r 2) if r1 < T. That is, the function N(r) is monotonically increasing.

"* If processor Pi is an internal processor and processors P1 and P, are the two children of

Pi, then Ni(r) = Ni (7r) + N,(ir) for each 7r. This is due to the assumption that each

internal processor contains no elements.

Definition 5.4 From above, a KVD list A, (generated on processor Pj) is called a

k-deviant KVD list, if the following tvo properties hold for the list:

84

V1 The key values are strictly increasing and the load values are monotonically

increasing with the following restrictions.

1. For the final item (r ,,m,, Li,•j), if rx,m, = oc, then Li,,n, = Nj(oc);

otherwise, M < Li,m, < Ni(ri,mj).

2. All the non-final load values (i.e., all the load values except for the final

one) are less than M.

V2 Let the list have a pseudo item (7riO, LAo), where iro = -oo, and Lj0 = 0. For

each key xr, where rir < r5 < 71ri(,+ 1) andO < J < m, - 1, the value N,(r) is

in the range, L0 _ Ni(r) _< kLij.

From the above definition, if k < k', a k-deviant KVD list is obviously also a k'-deviant

list.

Ni (R)

212

M = 9

4 d• Li4=6

L 2[
1 Li3--4

L.=1 L2key value 7t

-- i0 IE 7i2 7i3 7i4 7ti5o

(a)

Ni (n): [1,2] [2,41 [4,81 [6,121 [10, 01
I -!- ,

-07iT Iti 2 7Ci3 iE4 i5 00

(b)

Figure 5.9: (a) A key value distribution in the processor subtree Fi, showing a KVD list A,

(containing five items) which is 2-deviant, given .M = 9. (b) Simplified diagram to show the

possible range of Ni(r), given the 2-deviant KVD list in (a).

85

Figure 5.9(a) illustrates a key value distribution in the processor subtree U,, showing a KVD

list Ai (containing five items) which is 2-deviant, given M = 9.

An important feature of a k-deviant KVD list Ai is that for each key ir < 7r,,m, (the final key

value) we can find a load value L from the KVD list, such that L < N8r(7r) < kL. In Figure

5.9(a), the shadowed area indicates the possible range of N,(7r) for each ir. (Note that given a

2-deviant list the possible range of each Ni(ir) can also be depicted in a simpler way in Figure

5.9(b).) Thus, the list provides us with the rough KVD information.

In the next section, we will create KVD lists containing an exponentially increasing series

of load values. Thus, the number of elements in a KVD list can be reduced to a very small

number.

5.2.3 Combining

In this section, we will first design a combining operation which can find a key value thresh-

old rth, satisfying the condition N(trhr) = G(M), and in which each packet has at most

[x(lgp)(lgM)j + I items (where ic is defined in Theorem 5.6). Then, we will further im-

prove the operation such that each packet only needs at most ["K lg2 p1 + I items (note that

M may be much larger than p), while we can still find a key value threshold rTh, satisfying

N(Wthr) = O(M).

We summarize the combining operation in which each packet has at most [K(Ig p)(Ig .1)1 + I

items, as follows. Each leaf processor first creates a 2-deviant KVD list with at most [lg -1!] + I

items, as described in Section 5.2.3.1, and then sends the list to its parent. Then, for each internal

processor node Pi, if its two children have generated k-deviant KVD lists and have sent their

lists to P,, then Pi can, as shown in Section 5.2.3.2, merge their lists into a KVD list with

k(W + 6)-deviation and with at most ['t(lgp)(Ig M)1 + I items. If processor Pj is not the root,

the list will be sent to its parent which in turn repeats the above operation. If processor P, is

the root Pt, Lemma 5.7 below proves that the KVD list A¾t of the root processor is 4-deviant.

Now. we can choose the final key value 7rrtm,, in Art as the key value threshold because the

condition N(0rt.m,,) = ((M) blds according to Lemma 5.8.

86

Lemma 5.7 For the combining operation described above, the KVD list on the

root processor is 4-deviant.

Proof. By Lemma 5.9 in Section 5.2.3.1, all the KVD lists on leaf processors (at

level q) are 2-deviant. Then, the KVD lists on those internal processor nodes at

level q - I are 2(1 + 6)-deviant, by Lemma 5.11 in Section 5.2.3.2. Whenever we

go up one level, the deviation degree becomes (I + 6) times larger. Thus, the list

on the root processor will become 2(1 + 6)q-deviant. Since 3 2(1 + 6)q < 4, the list

is also a 4-deviant list. [1

Lemma 5.8 For the combining operation described above, N(rrt.mr,) = O(l),

where rrt.,,m, is the final key value in the KVD list Art of the root processor Pt.

Proof. We will prove that (1) N(lrt,m,.t) > M and (2) N(-,t.mn,,) __< 4M.

(1) We will prove N(r,.t.,,,,) > M from the first restriction of Property V I in the

KVD list Art (note that the list is 4-deviant from Lemma 5.7). If ,'rr,mr, = oc,

then Nt(oo) > M because the total number of elements, N(0o), is at least .1

from the definition of the PRS problem. If lrrt,m, is not o,, <- _ .V7 t(,'rT.mr,).

Thus, N(7rrt.,n,,) Ž> M, for both cases.

(2) Since N(rlt,,,,,) = N(rrt,,m,, - 1) + n('rrtm,,), it suffices to prove that the

following two conditions hold: (a) n(irrt.m,,c) < I and (b) V(-,rrt.,, - I) <

4M. Since all elements have distinct key values, each n(r) < I, i.e., the

condition (a) holds. Since the KVD list A\t is 4-deviant, .V(-rt.,n,, - I) <
4 Lrt,m,,-I. From the second restriction of property V1, Lrt.,,_ < Al.

Thus, N(rWt,m,, - 1) < 4M, i.e., condition (b) holds. [

The above combining operation can find a key value threshold satisfying the condition

N(7rh,) = 6(MI), with each packet requiring at most [K(lgp)(lg M)1 + I items. This upper

3The Maclaurin series (Taylor expansion around zero) for log(I + 6) is 6 - : + L- L.... In addition, since

2, I> b > 0. Hence, we can derive that 6> log(1+6) > 6- ". Thus,(l+6)q = 2q9Ig0+A) < 2 q0eIg) = 2.

87

bound is greater than ['x 1g2 p] + I (in Property U2) when M > p. So, we will, in Section

5.2.3.3, reduce the number of items in each list, such that each packet has at most FK 1g2 p1 + I

items (satisfying Property U2) while retaining the property that the key value rr,,., is a key

value threshold satisfying the PRS problem.

5.2.3.1 Leaf Processors

In this section, we will design the algorithm, called the Create Algorithm (below), that each leaf

processor will use to create its KVD list. Then, we will prove in Lemma 5.9 that the created

KVD list is 2-deviant, and in Lemma 5.10 that the list has at most [Ig M1 + I itesns.

Create Algorithm

Step 1 Initially, let the variable L = I and the list Ai be empty.

Ni (11)

16

Li5= 16

M = 9 ...

r.,i=1 =2key value it

Figure 5.10: A key value distribution in the processor subtree F., showing the 2-deviant KVD

list A, (containing five items) which is generated by the Create Algorithm, given .11 = 9.

88

Step 2 If Ni(oo) < L, append a new item (oo, Ni(oo)) to the end of the list A, and then stop.

Step 3 Find the Lth smallest key value r, and append a new item (r, L) to the end of the list

A1. Note that since all elements have distinct key, Ni(r) = L.

Step 4 If L >l M, stop; otherwise, let L = 2L and repeat Step 2.

From the above algorithm, all the non-final items in this list should be generated at Step 3

and hence their load values are 1, 2, 4 and 2m,-2(< 3l). Figure 5.10 illustrates a key value

distribution in the processor subtree Fi rooted at processor Pi, showing the 2-deviant KVD list

Ai (containing five items) which is generated by the Create Algorithm, given Al = 9.

Lemma 5.9 On each leafprocessor, its KVD list generated by the Create Algorithm

is 2-deviant.

Proof. We will prove that on each leaf processor Pi, its KVD list A\, generated by

the Create Algorithm satisfies Properties V I and V2.

V1 We will consider the non-final items first and then the final item. From the

Create Algorithm, all the non-final load values are I, 2, ..., 2m.-2(< .I),

so they are strictly increasing and the second restriction holds. As for all

non-final key values iriw, since L(7ri,) = Lij and non-final load values are

strictly increasing, we can derive that these non-final key values are also

strictly increasing.

Now, let us consider the final item (r,.m,, L,,m,). If the algorithm stops at

Step 2, then lri,m, = co and Li,,m, -- N(oc). Otherwise, the algorithm stops

at Step 3. In this case, iri,m, 4 oc and Li,,m, = V,(-i,.m,) > A!. Thus, the

first restriction holds. In addition, since the last load value is either ,V,i(:z)

(greater than or equal to each Ni(r) and each non-final load value, which is

some Ni(r)).or at least M, the value is no less than any non-final load value.

Thus, all the load values in the list are monotonically increasing. Since the

last key value is either oc or a key value 7r such that Ni(7r) > .1, we can

derive that the key value is greater than any non-final key value. Thus, all the

key values in the list are strictly increasing.

89

V2 Consider any two consecutive items, the jth item and the (j + 1)-st item,

where 0 < j _< m - 1. Since L = iVi(ir) for each item (x', L) generated

by the Create Algorithm, we can derive the followirZ property: for each key

value 7r, where 7rj < 7r < 7ri(j+l), L,• = NV(r,1) _< N,(Vr) _< N,(7r,+I)) =

Li0(+I). In order to prove that Property V2 holds, we will only prove that

L,(j+I) _< 2Lj, as follows. If the (j + 1)-st item is generated at Step 2,

then Li(j+l) = N2(oc) < 2Lij, otherwise, the item is generated at Step 3 and

L,(.+,) = 2Lj. [

Lemma 5.10 On each leafprocessor, its KVD list obtained by the Create Algorithm

has at most [lg M] + I items.

Proof. Since the non-final values are 1, 2, ..., 2`'--2 (< M), we can obtain that

mi - 2 < Ig M, i.e., mi < [lg Mi + 1. Thus, the lemma holds. '

5.2.3.2 Internal Processor Nodes

In this section, we will design an algorithm that each internal processor node P, uses to merge

the KVD lists from both of its children P1 and P, into its KVD list A,. We will also prove that

the new list is k(1 + 6)-deviant if both KVD lists from its children are k-deviant, and that the

new list has at most [fr(lgp)(lgM)] + I items. But, before investigating the algorithm, we

will first present a simpler merge algorithm as follows.

Simple Merge Algorithm: Let the symbols (-,ri, LI) and (Lr,, L,) reqresent the first items in

A, and A, respectively; and let the symbols (-,r', L') and L') represent the previous deleted

items in A, and A, respectively.

Step I Let both (ir', Ll) and (r', L') be (-.c, V,(-.:c) = 0).

Step 2 If 7r, = 7r, append a new item (-ri, LI+L,) to the end of A,, remove both first items from

At and A, and go to Step 4. Note that if a new item is appended then the values of ,, L1,

7r,, L7, r', L', 7r', and L', are changed implicitly.

90

1 2 4 6 12

-00 7C12 ?L13 7I4 115 o

*1 2 4 7 10
P.-00 7r1 1r2 rr3 •Er4 •r5 00 1E

1 2 4 5 8 10
Pi: so i- -

"**W hrl;C2 IUIN7O 7i6 It

Figure 5.11: An example of the merge operation from A, and A, into A,, given M = 9.

Step 3 If ir' < r,, append a new item (rO, L,+L') to the end of A, and remove the first item of

A,; otherwise, append a new item (rr, L,.+L') to the end of A, and remove the first item

of A•,. Note that after this step the values of ri, L1, -,., L,-, Tn,, L', -r', and L', are changed

implicitly.

Step 4 In the newly appended item (r, L), if L > M or r = oc, stop; otherwise, repeat Step 2.

Figure 5.11 illustrates an example of the merge operation. We also need to point out that

this merge algorithm will not repeat Step 2 (fron, Step 4) in the condition that either of KVD

list Ai or A,. is empty. Assume that the final key value of one list, say A,. is merged into A,.

From the first restriction of property VI, either the final key value of A. is zc or the final load

value of A, is at least ,M,. For the former case, the appended key value of A, is also V and

therefore the appended item is the final item (see Step 4) in the new list; for the latter case, the

appended load value is also at least M and therefore the appended item is also the final item

(also see Step 4). From the above, the last key value of A, must be no greater than either of the

last key values of A, and Ar.

Lemma 5.11 (below) proves that if the deviation degrees of the lists from its children are

the same, the parent's list has the same deviation degree. Since the lists of all leaf processors

are all 2-deviant, the list on the root will still be 2-deviant.

91

Lemma 5.11 For the above simple merge algorithm, if both At and A, are k-

deviant, the new list Ai is also k-deviant.

Proof. We will examine Properties VI and V2 in the new list A,.

V1 The above simple merge algorithm merges items of both lists A, and A, accord-

ing to their key values. Step 2 merges two items with the same key value into

one item, while Step 3 keeps the key values of the new list A, in increasing

order. Thus, in the new list, the key values are strictly increasing. As for the

load values in the list A1, tht y are monotonically increasing for the following

reason. For each item in A,, its load value must be any of L1+L, (Step 2),

LI+L,, and L1+L' (Step 3), while the load value of its previous item (if any) is

L' + L'. Since the load values in both At and A,. are monotonically increasing,

L, > L' and L, > L'. Hence, the load value of an item must be no less than

that of its previous item. Therefore, the load values in A, are monotonically

increasing too. In addition, we will prove that the two restrictions in property

V I hold, as follows.

1. For the final item, (7r,.m,, L,.,,), suppose that :r,.m, = . The final items

of A, and A, also have key values :o. Hence, both final load values of A,

and Ar are Nj(oo) and N,(ac). Thus, from Step 2, the final load value

of A, is NV(oo) + N,.(oo) = N,(oc), i.e., the first restriction holds in this

case.

Suppose that lr,,m, o o. Then, from Step 4, the final load value L,.m,

must be at least M. So, for the first restriction, we will only need to prove

that the fo",)wing condition C holds: L,.,,, < N,(r.i,=). If m,,, is less

than both r1,m1 and Tr.m,,, we can derive the condition C from Property

V2 (which will be shown below). If rt.,m, or 7r,.,,, say the former, is

ri,m, (note that 7ri.m, cannot be greater than either rt.,m or rr.mr as shown

earlier), then Lm, < Nl (rtm,) from the first restriction of Property V I in

the list A,. Hence, we can derive that the condition C holds, by applying

the technique used in the proof for Property V2 (below). Therefore, this

restriction holds.

92

2. All the non-final load values in the list A, are less than -l because if one

of them were at least M the item containing it would be the final item

(see Step 4).

N1 (Q): (L', kL ']

-. IC'l !11 00 7E

Nr (1): [L'r, k•'rI

r I[r 00

Ni (It): [L'i + L'r, kL'l + kL'r]

--- o0C00 IS 7[~liuj- l) 7ij o f

Figure 5.12: An example of examining property V2.

V2 In the above merge algorithm, consider the moment immediately before we

append the jth item to A,\, where I < j < in,. The key value of the (j - I)-

st item is r'i(j-t) = max(7rr, r') and the key value of the jth item will be

7r,, = min(r 1 , 7r,). Figure 5.12 illustrates an example. Thus, for all key r,

where 7ri(-t) < r < ri,, the condition L' < N.(r) < kL' holds because A,

is k-deviant; the condition L' < ,V.(r) < kL' holds because A, is k-deviant.

Since N,(r) = .V(r) + Vr(r-), the condition L, + L' <• .V,(r) _< kLI + kL'

holds. Since the (j - I)-st load value is L, + L', property V2 holds. 0

Although this algorithm can merge KVD lists while keeping the same deviation degree,

the number of items in the new list may double after each merge operation. Hence, the list of

the root processor and those internal processor nodes near the root may have O(p ig ./) items.

Thus, the performance will degrade seriously, given a large p.

In order to solve this problem, we will modify the above simple merge algorithm by

removing those items (excluding the first and final items) whose load values are too "close"

to the previous load values. More precisely, at Step 4, we will add an operation immediately

93

before "repeat Step 2" as follows: delete the newly appended item (r, L1 if L < (I + 6)L',

where L' is the load value of the previous item. Lemma 5.13 (below) will prove that the number

of items can be greatly reduced to at most [tc(Igp)(Ig M)] + 1. The price that we have to pay

for reducing the number of items is that the list will have higher deviation degree. Lemma

5.12 proves that the deviation degree becomes only (I + 6) times higher. Since 6 is a very

small number (6 = 1/(2 Ige Igp)), we can still keep the deviation degree of the KVD list Art

on the root processor constant (as shown in Lemma 5.7).

Lemma 5.12 In the above modified merge algorithm, if both A, and A,. are k-

deviant, the new list A, is k(I + 6)-deviant.

Proof. We will prove that for the new list A\ Properties VI and V2 hold.

V1 For the modified merge algorithm, we still keep the first and final items, and

may delete some items between them. Since the ordering of the remaining

items is still not changed and the final item is not deleted, we can derive that

the new KVD list still satisfies Property V 1.

[Lij' kLij] '# -* LU Ljj+ I

0 lii WN I+]ti+oo IC

Figure 5.13: An example of removing items.

V2 In the KVD list A, consider any two consecutive items, say the jth item and

the (j + 1)-st item. Let the item (-,r, L) be the last removed item between

the jth and the (j + I)st items, as shown in Figure 5.13. In the modified

merge algorithm, we remove the item only if L < (I + 6)tL,. Thus, for each

key value -r, 7,j _ 7 < 'rz•+), L, <_ ,Vi(-r) < UL < k(I + 6)Lj. Thus,

Property V2 holds. '

94

Lemma 5.13 For an internal processor node P,., if its KVD list Ai is merged by

using the above iwdified merge algorithm, the number of items in Ai is at most

r,(lgp)(igM)] + I.

Proof. For this proof, it suffices to prove that the number of non-final items is

n < fic(Igp)(lgM)]. For every two consecutive non-final load values L' and

L (the next load value of L') in Aj, the condition (I + 6)L' < L holds from the

modified merge algorithm. Hence, the last one among all the non-final load values

must be at least (I + 6)"-I (note that the first load value must be at least one). Since

each non-final load value is less than M from the second restriction of Property

V1, we can derive that (I + 6)n'-I < Morn - I < (IgM)/Ilg(l +6). Fromthis

result, it can be verified4 that n < [K(lgp)(lg M)]. 0

5.23.3 Improved Combining Operation

For the above combining operation described in the previous two sections, each packet has at

most ['K(lgp)(lg M)1 + I items. When M > p, the upper bound of the item number is higher

than [" 1g2 p1 + I in Property U2. So, in this section, we want to reduce the upper bound to

[r lg2 p1 + 1, while letting the final key value in the list of the root processor be a key value

threshold.

In the improved combining operation, we only need to modify the original Create Algorithm

by removing those non-final items whose load values are less than Al/p, as illustrated in Figure

5.14(a) with M = 9 and p = 4. Hence, the first non-final item (if any) has a load value

L, M/p < L < 23M/p. Thus, the number of non-final items generated by the new Create

Algorithm will become at most fig Pl (i.e., the total number of items are at most [Ig 1p1 + I),

because we can double at most [igp- - I times between .1/p (inclusive) and .1! (exclusive).

On the internal processor nodes, we still use the modified merge algorithm (described in

the previous section) to merge the KVD lists. It can beeasily verified from the modified merge

algorithm and the new Create Algorithm that the first non-final load value (if any) of a KVD

4As shown earlier. log(I + 6) > 6 - 62/2 = 6(I - 6/2) = 6/Kb. Hence. (IgM)/Ig(I + 6) <

(Ig M)/((0g e)(/,)) < x•0g p)(9g M).

95

Ni (7X)

16 I
Li_= 16

M = 9

I Li2=8

M ip = 9/4 "- Lil=4

I--"Tkey value 2t

--o) X Iril 7ti2 7Ei3 00

(No items with
priorities here)

(a)
N,0(t)

16

L Li3 =16

M = 9i
S~Li2=8

M lp =9/4V Li 1--4

key value 7t

(b)

Figure 5.14: (a) Removing those items with priorities lower than M/p(= 9/4). (b) Increasing

the key values less than iri to wri.

96

list on an internal processor node is still at least M/p. Then, we can derive in Lemma 5.14 that

the number of items in Ai is at most FC lg2 pA + 1.

Lemma 5.14 For the above improved combining operation, if a KVD list A, on an

internal processor Pi is generated by the modified merge algorithm, the number of

items in Ai is at most rK lg2 p1 + 1.

Proof. Since the first non-final node (if any) is at least Ml/p and each non-final

node is less than M, we can derive that the number of items in A, is at most

[ic(lgp)(ig M)] + 1, by applying the same technique used in the proof of Lemma

5.13. [0

Although the number of items in each packet is reduced to what we want, we should note

that after the modification each KVD list generated by the new Create Algorithm may not be

2-deviant. This is because on the corresponding leaf processor there may be some elements

with key values lower than the first key value of the list. In order to let each ieaf processor's

KVD list Ai become 2-deviant again, we increase those key values less than ,I (in the processor

subtree 1i) to 7rdi, as illustrated in Figure 5.14(b). After increasing the key values, each n(-.)

becomes at most 2M/p.

Since the internal processor nodes still use the modified merge algorithm to generate

their KVD lists, Lemma 5.11 still holds and then the KVD list in the root processor is still

4-deviant from Lemma 5.7. Although n(r) :_ 2M/p for each r, we still can derive that

N(Trt,,,,) = O(M), by applying the same technique used in the proof of Lemma 5.8.

The above result only shows that after increasing key values, the value N(r,,t.m,,) is O(.1!).

Lemma 5.15 proves that if we increase at most 2M/p nodes on each of p leaf processors

and the value N(7r) is O(M) after increasing these key values, the value N(r) is also O(M)

before the increasing. This implies that the condition N(rt.m,,) = O(M) also holds before

the increasing; that is, the final key value 7rt.,,, is a key value threshold satisfying the PRS

problem.

97

Lemma 5.15 For the PRS problem, suppose that we increase key values of at

most 2M/p elements on each of the p leaf processors. If N(r) = E((M) after

we increase these key values, then the original N(7r) (before increasing these key

values) is also O(M).

Proof. Let Nbfor(ir) denote the original value N(') and NV,(r) denote the

value N(r) after we increase some key values. Since we increase key values

of at most p(2 MI/p) elements, the value N(ir) decreases at most 2M in total.
Hence, Npfo,,(lr) - 2M < Nft,,(7r) < N,,,,(r), that is, ,,tbEF(r,) < Nb'f,,,(1r) <

NVaft,(r) + 2M. Therefore, if N,,,(r) = O(M), then Nbfo,,,(7r) = O(M).

5.2.4 Time Complexity

In this section, we will analyze the time complexity of the PRS algorithm based on the two

assumptions: (1) it takes 0(1) time to send each piece of data; (2) each (leaf) processor

maintains elements based on the priority queue described in Section 4.2.1 by letting the grain

size of each element (corresponding to a task) be one.

The KVD lists on leaf processors are generated by the Create Algorithm. In this algorithm.

Ster' 3 can use the THRESHPRI operation (an operation on the priority queue described in Section

4.2.1), so the computation time at Step 3 is O(log NV), where N, is the total number of elements

on processor P,. Note that each other step only takes 0(1) time. Since N, < V, the time

complexity is O(log N) too. Since there are at most [Ig p] + I items in the list on a leaf

processor, we will repeat each step at most [ig p] + I times. So, the total time on each leaf

processor is 0((logp)(log V)).

The KVD lists on internal processors are generated by the modified merge algorithm. Since

the algorithm does a merge operation, the time depends on the number of items. The number of

items in each list is at most [ig 2 p] + I (or O(log2 p)), so the total time taken for each internal

processor is only O(log2 p). Since there are Igp levels in the processor tree and processors

at the same level can process the merge operation in parallel, the total time of the combining

operation is O(log3 p + (logp)(log N)).

As for the disseminating operation, we broadcast the value of 7rthr from the root processor

98

to each leaf processor. Obviously, the time complexity is smaller than that of the combining

operation.

After each leaf processor receives the value lrth,, the processor will use the SP~iT operation

(an operation of the priority queue described in Section 4.2.1) to partition the priority queue into

two parts, one containing tasks with priorities 7r >_ wth, and the other containing the remaining

tasks. The time complexity for the SPLrr operation is only 0 (log n).

From the above, we conclude that the total time complexity is O(log3 p + (log p)(log .N)).

5.2.5 Discussion

In this section, we will first show that when the degree of the processor tree is a constant

(integer) more than two, we still can solve the PRS problem by using one combining and

disseminating operation in which each packet size is O(log-2 p). Then, we will discuss how to

apply the PRS algorithm to our multilist scheduling system.

Suppose that an internal processor node P, has three children. Processor P, will do the

3-way merge operation after receiving three KVD lists from its children. Using the technique

of the modified merge algorithm, the number of items in the KVD list A, is still 0 log2 p) and

the deviation degree of) still increases by a factor of (I + 6). Since the height of the processor

tree is lower than lgp, the KVD list in the root processor is still 4-deviant. Thus, the final key

value of this list is still a key value threshold 7rth, satisfying .V,(,-rth,) = (01). This can be

generalized to any constant degree processor tree, so we still can solve the PRS problem by

using packets with size O(log2 p).

For the multilist scheduling model, the problem in Section 4.1.2.2 is as follows. Given a

load threshold Lhh and a set of tasks each containing a priority and a grain size (represented by

an integer), select a set of highest-p-ioritv tasks whose total load (summation of grain sizes) is

L,s. = O(Lth,), if each task's grain size is O(Lthr) and the total load of tasks is Ltota = Q(Lth,).

If the maximum task grain size G,,,z is larger than Lt.,, then L.,,, = O(Gm.t) because we may

need to group the task with GMa, (e.g., when the task with the grain size Gm,,. has the highest

priority). If the total load of tasks is Lo,,a < Lthr, then L,,, = Ltot. because we can at most

group tasks with total load Ltot,.

99

Now, we want to translate the above problem to the PRS problem in order to apply the PRS

algorithm presented in this section. Since each task T may have a different grain size G-7, we

can conceptually break a task into GT elements with the same priority. Then, for each element

which is the j-th element with priority ir on processor Pi, we can define its key value as the

compound key (-ir, i,j), such that all key values are distinct. Note that by negating r-, we

translate highest priority to lowest key value. We should note that when we break a task T

into Gr elements, we let these elements be the ith element to the (i + Gr - 1)-st element with

the same priority of T on the same processor, so that the elements for the same task will have

consecutive key values. Thus, there is at most one task whose elements are partially selected.

Since in the actual implementation we still need to select the whole task T, the total load of

selected tasks may be G,,,, higher than the total number of selected elements. If G,,a < Lth,,

the total load of selected tasks is still E(Lth,).

In addition, since the system does not know Lt,,, in advance, we cannot guarantee that

Lt t., >_ Lth,. In the case that Ltota < Lth,, the final item of the KVD list in the root of

the processor tree must be (oc, NV(o-) = Ltot,,) from the first restriction of property VI. In

this case, we can simply broadcast the final key value (oc) to select all the tasks such that

L sa = Ltotal.

100

Chapter 6

Experimental Results

In this chapter, we will describe our experiments with the multilist scheduling model and show

good performance results for the PBFS-GPQ and PDC-WK scheduling algorithms. (Since for

parallel best-first search (BFS) we only choose PBFS-GPQ and for parallel divide-and-conquer

(D&C) we only choose PDC-WK, we will respectively abbreviate their names as PBFS and

PDC in this chapter for simplicity.) In Section 6.1, we will describe the environment in which

we have run our experiments. Then, we will present two application examples, the Fibonacci

problem and the set covering problem, each of which can use either the PBFS or the PDC

scheduling algorithm, and we will report our experimental results for these applications. The

two application examples will be described in Sections 6.2 and 6.3, respectively.

6.1 Environment

Our multilist scheduling model is currently implemented on Nectar [6], a high-bandwidth and

low-latency computer network developed at Carnegie Mellon University. The Nectar system

consists of a Nectar network and a set of network coprocessors, called communication accel-

erator boards (CABs), as illustrated in Figure 6.1. We can connect hosts (e.g., workstations)

to Nectar by attaching them to CABs via VME buses. Each CAB is a Sparc-based network

coprocessor with 1.5 Mbytes of local memory. Since each CAB has local memory, we can

install some processes on a CAB. The Nectar network consists of 100 Mbits/s fiber-optic links,

101

N D9 NODE

SNectar syte
Nectar network

SNODE

NODE .NODE Fiber optic linkHOSTHOST• -VME bus

Figure 6.1: The Nectar system.

plus 16 x 16 crossbar switches called HUBs. The CAB is connected to a HUB via a fiber

link. In our experiments, we use up to 8 Sun4/330s. The number of processors is not large,

but is sufficient to validate our multilist scheduling approach. In order to make the results

directly comparable, we run our experiments when no other users are using these machines.

As for software, Nectarine [94] is an interface package that provides efficient communication

primitives for programmers to access the Nectar runtime system. We have implemented our

system using Nectarine.

Basically, the implementation of the multilist scheduling model follows the description

presented in Chapter 4. For maintaining physical lists (PLs), we choose 2-4 trees instead of 2-3

trees simply because 2-4 trees may require slightly fewer operations of reconfiguring the trees.

Note that for all integer constants a > 2 and b > a the heights of all a-b trees are still O(log n.)

[31, where n is the number of distinct priority keys; thus, properties P I and P2 in Section 4.2

still hold for all such a-b trees. In addition, since derived PLs have not been implemented, we

102

still use two base PLs to implement the PDC scheduling algorithm.

GLB GLB GLB

(on P)on Po) (on Po)

(a) (b) (c)

GLB (on P3)

(on Po) (on P4)

(d)

Figure 6.2: GLB trees for (a) one, (b) two, (c) four, and (d) eight processors.

For maintaining virtual lists, we use the advanced global protocol for global scheduling and

the standard protocol for other situations. In the global protocol, it appears that the degree of

the global load balancer (GLB) tree should be moderately large because for a tree with small

degree (say 2) we need more GLB processes each of which will incur some overhead. In [901,

Sinha and Kale also implemented similar global scheduling by letting one load balancer handle

at least 8 processors or 8 load balancers, i.e., they used a load balancer tree with a degree at

least 8. But, in our actual implementation, since we will use at most 8 processors, we let the

tree degree be 4 so that we can conduct experiments for a GLB tree with more than one level.

Figure 6.2 shows GLB trees with p = 1, 2, 4, and 8, where the tree for 8 processors requires a

two-level GLB tree and others require only a one-level GLB tree.

The GLB processes can be installed either on host processors or on CABs. Since most

parallel systems do not use network coprocessors (such as CABs), it is natural for us to focus

103

.

on the case of installing GLB processes on host processors. However, we will also examine

the case of installing them on CABs in order to see the benefit of using network coprocessors.

For the analysis of the experimental results in the following sections, we define speedup and

efficiency in Definition 6.1 below. The time taken to run a job on one processor of the parallel

version is generally higher than that for a sequential prcgram because the parallel version also

includes some scheduling, communication, and GLB overhead. Therefore, it makes more sense

to use the timing results for the sequential version as a baseline.

Definition 6.1 Let Tseq be the execution time for the original sequential version

of a program. Also, let Tp be the time for the parallel version of the program

on p processors. We define the SPEEDUP as Sp -= Tseq/Tp and the EFFICIENCY as

Ep = Sp/ p. If we use T, instead of Tsq, we call these measures SIMPLE SPEEDUP,

"S' = T1/Tp, and SIMPLE EFFICIENCY, E = S' p.

6.2 Fibonacci

In this section we will present a simple Fibonacci problem, which will allow us to derive the

average overhead for one task and to investigate the case in which tasks have a minimum

number of operations.

Figure 6.3: The computation tree for F(3).

104

The Fibonacci problem solves the function F(n) recursively as follows.

Fnn) = I ifn=Oorn= I
F I) = Fn - 1) + Fn - 2) otherwise

We can recursively expand this computation as a tree, as illustrated in Figure 6.3 with n = 3.

This can be considered as a D&C algorithm. The program can be made parallel by letting each

node in the computation tree represent a thread. After the node for F(n) creates two children

for F(n - 1) and F(n - 2), the node is suspended. The node becomes executable again only

after receiving two returned values F(n - 1) and F(n - 2) from its two children.

We will use PDC as the scheduling algorithm for this parallel program. As described in

Section 3.1.2, each node initially has local priority ,'rL = I and global priority ira = -i, where
1 is the level of the node in the tree. When the node resumes from suspension (i.e., when it

receives two returned values from its two children), T-G of the node becomes a very low number,

say -o0. The reason is that since the grain size of the node at this moment becomes very small

(see the grain size definition in Section 4.1.2.3), we prefer not to move the node to another

processor.

processors (p) 1 2 4 8

Total Time (T) 53.88 27.61 13.54 6.84

Simple Speedup (S') 1.00 1.95 3.97 7.86

Simple Efficiency (E') 1.00 0.98 0.99 0.98

Table 6. 1: The total times (in seconds) and simple speedups/efficiencies for parallel Fibonacci.

In our experiment, we computed F(26) with the GLB installed on a CAB so that we may

ignore the GLB overhead. The performance results are shown in Table 6. I. Task creation and

scheduling (i.e., task insertion and deletion) dominate most of the computation time because

other operations require short times, for the following reasons. The essential computation for

Fibonacci consists of only addition and assignment, which is insignificant when compared with

the overhead of task scheduling. In addition, we also observe little communication, i.e., 98

sends/receives (about 20 milliseconds in total) for each processor. Since computing F(26)

requires scheduling nodes 589252 times (including the times for rescheduling nodes which

resume from suspension), the average time for one task scheduling and task creation is about

91.4 microseconds (53.88 seconds /589252).

105

The results for simple speedup also show that the mechanism for task scheduling and

creation can be parallelized well. For example, the simple speedup for 8 processors is as high

as 7.86 and the simple efficiency is 98%.

6.3 Set Covering

Set covering is an important application of integer linear programming in the area of mathe-

matical optimization. Balas and Padberg [9] surveyed many Leal applications of set covering

in industry and listed over 10 types. Examples includes airline crew scheduling [221, truck

delivery [10], facility location [83], switching circuit design [84], political districting [36], and

information retrieval [30].

The set covering problem is

min{cx I Ax > e,x, = 0or 1.Vj, I <J < n}

where A is an m x n matrix of zeros and ones, c is a row vector of n positive (integer) weights,

and e is a column vector of m ones. The above definition can be interpreted as follows: Each

column a, of .4 is associated with a set MlI (associated with a weight c.) with the following

properties: (1) .AI is a subset of M { m 1; (2) each value I is in .1 if and only if a,, = I.

The set covering problem is to find a minimum-weight family of subsets .1,P I < j < n, which

covers all elements of M. For example, for airline crew scheduling, .! corresponds to the

set of flight legs (nonstop flights from one city to another) to be covered, while each subset

,IM corresponds to a possible tour (starting and ending at the same point via a sequence of

flight legs) for a crew. Let each tour be associated with a cost. The problem is then to obtain

a minimum-cost collection of these tours to cover all the flight legs in .W. According to the

survey in [91, there are usually hundreds of possible tours and thousands of flight legs to be

covered. In our experiments, we chose problems with 200 possible tours, and with 1000 flight

legs to be covered (the same size was commonly used in [8, 35, 411).

The set covering problem, as well as other mathematical optimization problems, usually

requires large-scale branch-and-bound (B&B) tree search in order to locate the optimal solution.

We have found that these searching processes are highly dynamic in the sense that it is difficult

to make useful a priori estimates on the number of nodes the search tree will explore and the

106

sizes of the nodes. This indeterminacy, plus the possible large load fluctuations in the network,

makes the problem of solving set covering over networks extremely difficult. Since both D&C

and BFS can be used to implement B&B tree search, the set covering problem is a good

application example to test both PBFS and PDC scheduling algorithms in our experiments.

The most advanced technique [8, 35, 41] for solving the set covering problem, as well as

other mathematical optimization problems [731, is based on the following two steps:

1. Convert it to a linear programming (LP) problem and find the optimum LP solution, which

may be a floating-point number. Usually, a LP problem can be solved very efficiently.

For exampie, Karmarkar [55] proposed a polynomial time algorithm to solve the LP

problem. In addition, Sethi and Thompson also designed a specialized pivot and probe

algorithm, called PAPA [88], to solve the LP problem efficiently.

2. Apply a B&B technique to search for the desired optimal integer solution starting from

the optimal LP solution. Since the LP solution is usually close to the integer solution,

the search tree will be much smaller than that without using this technique of utilizing

the LP solution.

The sequential set covering program for our Lxperiments was originally written by Harche

and Thompson [41]; it was optimized by Wu et aL [106]. This program takes the LP result

generated by the PAPA package [88] and then performs B&B tree search' interactively. This

program is described as follows:

1. The user chooses an upper bound and the tree search st. itegy, e.g., incomplete/complete

tree search and depth-/best-first search. Incomplete tree search is allowed because in

real applications getting a decent solution quickly is sometimes better than getting the

optimal solution in an enormous length of time.

2. The program uses the chosen strategy to search for all the solutions with costs less than

the given upper bound. The program will report the minimum cost of these solutions, if

one exists.

tIn the B&B tree search, only one column of data in the set covering matrix is transferred between any two

nodes of the B&B tree.

107

Regarding parallelization of B&B programs, researchers [63, 66] have reported the speedup

anomaly phenomenon in which the speedup is irregular (sometimes superlinear and sometimes

sublinear) when different numbers of processors are used. Since the order of expanding nodes

may vary when a different number of processors is used, the search 'may need to expand

significantly more nodes or fewer nodes.

Since this anomalous phenomenon would make our performance analysis difficult, we

choose cases in which the phenomenon does not occur. This ensures a rigorous standard in our

testing. For our experiments, we choose a problem in which no solution will be found in the

search; thus, we would prune no nodes at runtime. Thus, the expanded tree is always the same

in spite of different search orders. Note Lhat the tree shape is still very irregular.

Based on the above criterion, the experiments use four problems, called Problems 1, 2, 3,

and 4, of increasing sizes. In these four problems, the heights of the search tree are 30, 36. 66,

and 71, respectively; the numbers of tree nodes are 1135, 2107, 7097, and 23767, respectively.

In our experiments on the set covering problem, we apply both PBFS and PDC scheduling

algorithms, described in Sections 6.3.1 and 6.3.2, respectively. In Section 6.3.3, we show the

experimental results obtained by installing the GLB tree on CABs. In addition, we also apply

a scheduling algorithm, called parallel hybrid search (PHS), to the set covering problem in

Section 6.3.4. This shows how easily we can change to different task scheduling algorithms to

possibly obtain better scheduling.

6.3.1 PDC

Table 6.2 lists the performance results for Problems I through 4 with the PDC scheduling

algorithm. The results for speedups are also depicted in Figure 6.4. These results show that the

speedup increases with the problem size. In particular, on eight processors, the largest problem

(Problem 4) has a very good speedup of 7.71. This is because, in general, the number of nodes

N in a tree grows exponentially with the tree height h. For example, for a complete binary

tree, when h increases by one, V is doubled. Therefore, on the average, the larger a problem,

the more independent tasks are available; so the better the efficiency.

In order to understand the performance results of Table 6.2, we will examine the overhead

108

p l(seq) 1 2 4 8

T 16.01 16.29 8.51 4.66 3.05

Problem I S 1.00 0.98 1.88 3.44 5.25

E 1.00 0.98 0.94 0.86 0.66

T 31.60 31.97 16.48 8.73 5.01

Problem 2 S 1.00 0.98 1.92 3.62 6.31

E 1.00 0.99 0.96 0.91 0.79

T 176.58 177.36 89.24 45.79 24.64

Problem 3 S 1.00 1.00 1.98 3.86 7.17

E 1.00 1.00 0.99 0.96 0.90

T 464.45 466.74 233.38 118.00 60.24

Problem 4 S 1.00 1.00 1.99 3.94 7.71

E 1.00 1.00 1.00 0.98 0.96

Table 6.2: Measured performance results for the PDC scheduling algorithm (T: Time in

seconds, S: speedup, and E: efficiency).

0 9.00- 8.00 •(ideal)
q• Problem 4

.,Z! Problem 34L7.001
Problem 2

6.00-
5.00-Problem 1

4.00.

3.00

2.00

1.00 -

0.0 0 .I I I I0 1 2 3 4 5 6 7 a 9

processors

Figure 6.4: Speedups for Problems 1-4 with PDC.

1 2 4 8

Problem 1 0.09 0.04 0.02 0.01

Problem 2 0.18 0.08 0.04 0.02

Table 6.3: Averaged scheduling overhead in seconds when using the PDC scheduling algorithm.

109

and the idle time for Problems I and 2 which are representative for our analysis. There

are two main kinds of overhead: the overhead for scheduling each task locally (without any

communication) and the overhead for communication. Table 6.3 shows the average scheduling

overhead on each processor for Problems I and 2. The overhead for scheduling each task

locally is about 80 microseconds (= 0.09 seconds / 1135) from the table. Since the average

task computation time is about 15 milliseconds (which is 16,01 seconds/I 135 tasks), the

scheduling overhead is less than 1%. Since we always search the same complete tree, the

overhead for scheduling local tasks can be distributed over processors nearly evenly.

height 1 2 4 8

Problem 1 30 15 188 405 1154

Problem 2 36 8 265 502 1366

Table 6.4: Number of sends/receive pairs for the PDC scheduling algorithm.

To analyze the communication overhead, we measured the number of sends/receives for

Problems I and 2; results are shown in Table 6.4. Since each send/receive is roughly 200

microseconds [271, we can roughly calculate the aggregate communication overhead from the

table. For PDC, the ratio of the number of sends/receives to the product of the tree height and

the number of processors is close to a constant between 3 and 5. This result is close to the

theoretical communication cost [105], which is O(ph).

Recall the advanced global protocol in Section 4.1.2.3, which requires a second broadcast

during each load balancing round if the total load in T', is small. In our experiments, we only

need the second broadcast at most once for each run. This result is close to the theory in Section

4.1.2.3.

Processors become idle mainly in situations which lack parallelism or have long latency

for responding to task requests. In our implementation, we use a scheme in which a processor

schedules the next task while executing the current task. Since the task granularity is quite

large when compared with the latency of task request (each task request requiring about 3 to 5

sends/receives), processors become idle mainly due to lack of parallelism. Note that if the task

request latency is very large (e.g., when using a wide-area network), our system can schedule

several tasks at a time so that the latency can be hidden.

Table 6.5 shows the idle times for Problems I and 2. In general, the more processors that are

110

1 2 4 8

Problem 1 0.00 0.30 0.47 0.76

Problem 2 0.00 0.35 0.61 0.76

Table 6.5: Average idle times (in seconds) when using the PDC scheduling algorithm.

used, the more likely they are to become idle. For the trees in the set covering problem of our

experiments, the average branching factor (defined as NI/h) is very low, about 1. 1 to• 1.3. So,

for example, when we initially execute the part of the tree near the root, not much parallelism

can be exploited. When the number of processors increases, we expect the maximum value of

the average idle time to be close to the execution time of all the nodes on the critical path from

the root to the leaves. Since the number of nodes on the critical path (about 0(h)) is small

compared with the total number of nodes (N), the idle time for the PDC scheduling algorithm

can be negligibly small.

6.3.2 PBFS

p l(seq) 1 2 4 8

T 16.79 17.71 9.42 5.16 3.52

Problem I S 1.00 0.95 1.78 3.25 4.77

E 1.00 0.95 0.89 0.81 0.60

T 33.48 34.83 17.85 9.44 5.68

Problem 2 S 1.00 0.96 1.88 3.55 5.89

E 1.00 0.96 0.94 0.89 0.74

T 181.32 185.62 94.87 48.31 25.83

Problem 3 S 1.00' 0.98 1.91 3.75 7.02

E 1.00 0.98 0.96 0.94 0.88

T 475.31 486.84 247.03 125.77 64.81

Problem 4 S 1.00 0.98 1.92 3.78 7.33

E 1.00 0.98 0.96 0.95 0.92

Table 6.6: Measured performance results for the PBFS scheduling algorithm (T: Time in

seconds, S: speedup, and E: efficiency).

Ill

09.0O

1&0 (ideal)

7.00***

6.00 , Problem 2

5.00, Problem I

4.00

3.00

2.0o

1.00
0.00 L L i J' I I I I0'~ 1 2 3 4 5 6 7 8 9

processors

Figure 6.5: Speedups for Problems 1-4 with PBFS.

Table 6.6 lists the measured performance for Problems I through 4 for the PBFS scheduling

algorithm. The results for speedups are also depicted in Figure 6.5. Note that the PBFS results

are not as good as the PDC results. This is mainly because in Section 5.1, the PDC scheduling

algorithm employs a provably minimum number of interprocessor communication messages.

Nodes 1 2 4 8

Problem 1 1135 770 1190 1695 1846

Problem 2 2107 1672 1963 2716 3543

Table 6.7: Measured Nur,.-,,r of sends/receives when using the PBFS scheduling algorithm.

For PBFS, the idle time and the scheduling overhead are very similar to those for PDC

and their presence is for the same reasons discussed before. So, here we will only discuss the

communication overhead for PBFS. Table 6.7 shows the measured numbers of send/receive

pairs for Problems I and 2. The numbers for PBFS are much larger than those for PDC. This is

because in PBFS whenever a task is scheduled, the minimum-cost task needs to be recomputed

across all processors. As mentioned above, the communication cost for PBFS is O(NV). If we

check each column, the ratios of the amount of communication to the number of nodes are

nearly constant. But, when we use more processors, the ratios go up. This is because in a

realistic situation we need more control packets to help send a cross node out when using more

processors. However, our system only lets the ratio' grow from 0.7 (for one processor) to 1.7

(for 8 processors).

112

1•.00 -............................ C sc

0.80 .-

0.40 -- - . GLB on CABs for Problem 2
0.30 -- e GLB on hosts for Problem 2

0- -- + GLB on CABs for Problem 1
0.20. +- GLB on hosts for Problem I

0.10

0 1 2 3 4 5 6 7 t 19

processors

Figure 6.6: Efficiencies with PDC (installing GLB on CABs)

1I.OO =..................... fid.e.al).
• 0.90 o,

LU
0.70

0.60

0.50
0.40 - -8 GLB on CABs for Problem 2

- GLB on hosts for Problem 2
0.3o - + GLB on CABs for Problem I

0.20 - GLB on hosts for Problem I

0.10

0.00 I I a I , , ,01234 5 6 7 8 9
processors

Figure 6.7: Efficiencies with PBFS (installing GLB on CABs)

113

6.3.3 Global Load Balancer on CABs

In this section, we will investigate the effect of installing the global load balancer (GLB) tree

on CABs. When the GLB is installed on CABs, the GLB work is "off-loaded" from hosts to

CABs and therefore applications should get better performance.

Figure 6.6 (6.7) shows efficiencies of the PDC (PBFS) scheduling algorithms for Problems
1 and 2. The dashed lines are results obtained when we install the GLB tree on CABs; the

solid lines are the same results as those in Sections 6.3.1 and 6.3.2, which are obtained when

we install the GLB tree on hosts.

The performance data indicate that we can improve the efficiency by about 2% to 20% for

PDC and 5% to 20% for PBFS by installing the GLB on CABs. The improvement is small

because the task grain size (about 15 millisecond) is large when compared with the time for each

send/receive (about 200 microseconds). In general, installing GLB on CABs will help more

for those applications requiring heavy communication, such as problems with small-grained

tasks. Our results also show that we can save more time for PBFS (which requires more

communication) than for PDC.

1.00 (ideal)

o0.90

o0.80
0.70

0.60

0.50

0.40 - - -- 4E PHS for Problem 2
- PDC for Problem 2

0.30 - + PHS for Problem I
0.20- +-- PDC for Problem I

0.10

0.00 I I I I I I I ' '0 1 2 3 4 5 6 7 8 9

processors

Figure 6.8: Performance results for parallel hybrid search.

114

6.3.4 Parallel Hybrid Search

In the set covering problem, the computation tree is usually lopsided. A node with a smaller

cost usually has a bigger subtree. So, we can change PDC by assigning to the node rG =-

where c is the cost of the node. This is called parallel hybrid search (PHS) in the sense that

it behaves like PDC locally (on each processor) while it behaves like PBFS globally (over the

whole system).

The performance results for Problems I and 2 with PHS are shown in Figure 6.8. We

observe that PHS is slightly better than PDC, by at most a 10% margin. Most importantly,

this experiment demonstrates how easily we can change our scheduling algorithm to obtain

possibly better results.

6.4 Summary

We summarize our experimental results as follows:

* The average overhead for scheduling/creating one local task can be as low as 80 mi-

croseconds. The scheduling overhead can be parallelized well too.

e For the set covering problem, we generally get good speedups for both PBFS and PDC.

For a specific large problem requiring less than 500 seconds, we observed a speedup of

7.71 with PDC and 7.33 with PBFS on 8 processors.

@ The number of sends/receives for PDC is about O(ph) while that for PBFS is about

O(N). So, PDC can be scaled up well. For PBFS, a high-speed network can help

improve performance significantly.

* For PDC and PBFS, the maximum value of the average idle time can be close to the

execution time of all the nodes on the critical path from the root to leaves. Since the

number of the nodes. on the critical path (h) is small compared with the total number of

nodes (N), the idle time for the two scheduling algorithms can be negligibly small.

9 We can "off-load" the computation of the GLB to network coprocessors, if they exist.

115

e Although parallel hybrid search does not improve performance significantly, it serves to

demonstrate how easily we can change our scheduling algorithm to obtain possibly better

results. This point is especially important for parallel programmers who come up with

many possible scheduling algorithms and want to compare them empirically.

116

Chapter 7

Conclusions

7.1 Summary

In this thesis, we have proposed a general parallel programming model, called the multilist

scheduling model, which decomposes task scheduling into (1) the specification of scheduling

policies and (2) the implementation of supportive scheduling operations (e.g., routines for

maintaining task lists and handling interprocessor communication for load balancing), and then

hides the latter details from the programmer. This model is based on a uniform scheduling

model involving the use of multiple scheduling lists. The system has the following advantages:

1. Ease of use. Under this new model, programmers only need to specify scheduling policies

based on scheduling lists in order to implement scheduling algorithms; they do not need

to write the details of supportive scheduling routines. In fact, the supportive scheduling

routines are the most difficult and time-consuming part to write. Typically they require

thousands of lines of code in C. This was the case in our earlier experience [31, 621 in

parallelizing Noodles, a solid modelingprlgumk (Mi3nonths to write the load

balancing part! In sharp contrast, the code for the PDC-WK and PBFS-GPQ scheduling

algorithms (shown in Appendix A.2) only has about 10-20 lines. A program of this size

can be written within tens of minutes.

117

2. Generality. We have shown that our new model results in no loss of generality with

respect to the standard scheduling model (see Chapter 2). That is, we can recast any

scheduling algorithm in terms of our multilist scheduling model. We have illustrated

the generality of the model by implementing nine scheduling algorithms (in Chapter 3)

based on the model - two for parallel divide-and-conquer and two for parallel best-first

search, two for parallel network simulation, one for parallel quicksort, one for parallel

loops, and one for parallel alpha-beta search.

3. Efficiency.

"* We have shown that our general approach incurs no significant performance over-

head at least for the scheduling algorithms for parallel BFS and D&C. Although

the ultimate goal would be to show that our general approach incurs no significant

overhead for any scheduling algorithm, this goal appears to be impossible to meet.

Our limited success, however, is still significant. In the past, it was unclear how

to support scheduling algorithms for both parallel BFS and D&C in a uniform

framework [34]. We believe our system is the first that can do so.

"* We have devised an efficient technique to cope with the main problem of task

prioritization which arises when there is a sparse distribution of priorities. When few

tasks have the same priority, it would be inefficient to simply perform load balancing

by considering only those tasks that have the highest priority. Our approach is to use

a novel algorithm, called the parallel range selection (PRS) algorithm (see Section

5.2), to try to select additional highest-priority tasks, such that the total computation

time of these tasks is comparable to the maximum overhead for load balancing.

Then, we schedule tasks from this set in order to balance the load. In Section 5.2.

we proved that the PRS algorithm only requires one combining and disseminating

operation (defined in Section 4.1.2.2), and each packet size in the algorithm is only

O(log2 p), where p is the number of processors. This results show that the PRS

algorithm performs very efficiently on network-based multicomputers.

"* We have obtained good experimental results. For example, for a specific set covering

problem requiring less than 500 seconds, we obtain a speedup of 7.71 for parallel

D&C and 7.33 for parallel BFS on Nectar with 8 processors.

118

7.2 Contributions

The main contribution of this thesis is a new approach for parallel task scheduling, multilist

scheduling, which is easy to use, general, and efficient. This new approach successfully

decomposes the task scheduling process into the specification of scheduling policies and the

supportive scheduling routines such that the scheduling programmers can focus on designing

efficient scheduling algorithms, while the system designers can focus on designing efficient

supportive routines.

While proposing this new model, we also make the following contributions:

" We develop some multilist scheduling schemes to implement nine scheduling algorithms

- two for parallel divide-and-conquer and two for parallel best-first search, two for

parallel network simulation, one for parallel quicksort, one for parallel loops, and one for

parallel alpha-beta search.

"* We show that the multilist scheduling model results in no loss of generality with respect

to the standard scheduling model (see Chapter 2).

"• We present an efficient scheduling algorithm for parallel D&C and prove that, among all

the scheduling algorithms which can split the load nearly evenly, our algorithm is optimal

with respect to the communication cost.

" We design an efficient PRS algorithm for the situation of sparse priority distribution and

prove that the algorithm only needs one combining and then one disseminating operation

and each packet size is only O(log2 p), where p is the number of processors.

" We design an efficient data structure for the operations, INSERT, DELETE, MAXPRI,

DELETEMAX, THRESHPRI, and SPLIT (see Section 4.2). We also prove that the computation

times for all the above operations are O(logn), where n is the number of distinct

priorities in the priority queues, and the amortized times for the above operations which

access/insert/delete a task with the highest or lowest priority are 0(1).

"* We demonstrate good performance results for the scheduling algorithms for parallel BFS

and D&C.

119

Multilist scheduling is the first approach which can hide the details of supportive scheduling

routines while simultaneously supporting general task scheduling. We expect that this thesis

will have a significant impact on future parallel programming, especially in the domain of

multicomputers.

7.3 Future Work

The above research can be extended in the following directions.

e Apply the model to more applications, such as operations research problems (e.g., the

traveling salesman problem [76]), alpha-beta search problems, network simulation prob-

lems, scientific problems, and any other interesting problems.

* Formalize a language/interface. This also includes two important parallel programming

issues: handling global variables [14, 15] and calling remote procedures [7, 13, 54, 93,

96, 102] over distributed-memory systems.

* Add fault tolerance to the system. It is especially important for a network to tolerate

processor failure. For example, a remote workstation may be turned off unexpectedly.

* Develop tools on top of this package for delgogfU426ce monitoring [19],

and graphical development [121.

* Port our model to other parallel systems, e.g., CM5 [991 and iWarp [181; also port the

programming system to other network interfaces, e.g., PVM and sockets of TCP/IP.

120

Appendix A

User Interface

The current multilist scheduling system is operational at CMU. It has a C language interface.

This interface is presented in Section A. 1 in enough detail to illuminate the code of the PBFS-

GPQ and PDC-WK scheduling algorithms, which will be presented in Section A.2.

A.1 Interface Definitions

To distinguish our interface from system calls or variables, we prefix each function name with

"MLS_" (MultiList Scheduling).

A.1.1 Initializing the Multilist Scheduling System

void MLS_Init (spec, pkey-type, min_grain);

The MLSInit () procedure initializes the multilist scheduling system.

The parameter spec is the name of a user-defined routine which specifies the scheduling

pattern, i.e., the declaration of PLs and the.merge patterns for VLs (all vi" which will be defined

later). In the current implementation, the routine can only be executed inside MLSInt (.

121

The parameter mingrain is an integer, representing the minimum task grain size used

in the computation. The system currently assumes that all tasks have the same grain size.

"This parameter provides the task grain size so that the system can easily set up some system

parameters for load balancing. In our current system, since the overhead for task scheduling

and creation is already 80 microseconds (as shown in Section 6.3) on a Sun4/330, we let one

unit of grain size stand for 100 microseconds on Sun4/330s.

The parameter pkeytype determines the type of priority keys used in the system. The

choices are integer, string, bit string, etc. But, since the integer type is most common, we only

support the integer type (MLSINT_KEY) in the current implementation. The work in [851

uses bit string as the key type.

Since our system is in the SPMD (single program, multiple data) style [561, the program

is replicated on each processor. Each instance of the program (on a distinct processor) must

explicitly call MLSIni t () before calling any other functions which are described below for

the multilist scheduling system.

A.1.2 Physical Lists

There are two kinds of physical lists (PLs): base PLs and derived PLs.

MLSList.p MLS_BasePL (list_name, listtype,

ib, ub, Indiv_Range);

The MLSBasePL () procedure creates a base PL with the name list_name, the type

list_type, the expected priority range between lb and ub (inclusive) and the indivisible

function Indiv Range, and then returns a pointer to the PL with type MLSList__p. Note

that the word list in our interface, by convention, represents PL.

The parameters lb and ub respectively specify the lower bound and upper bound of the

priority range in this PL. If the bounds are not known a priori, the user can use the complete

priority range, whose-lower bound and upper bound are respectively MLSMINPRI and

MLSMAXPRI, defined by the system.

122

The parameter IndivRange is some user-defined function IR (pri): given pri, the

function IR () returns a priority range containing the priority pri. The PL can use this function

to determine if a new maximum priority is out of the original priority range. If so, the system

may need to report to another processor. (See Section 4.1. 1.) If the parameter Indiv Range

is null, this implies that each priority is a distinct indivisible priority range. If the PL will not

be merged into any VL on another processor, the parameter IndivRange has no effect.

We currently restrict the list type to 2-4 trees (see Section 4.2.1) to implement PLs. But, in

the future, the parameter list_type may be used to specify another type of list, in case we

discover some type of list which is more efficient for some cases.

If this procedure is called for the jth time on processor P,, the created PL is designated

PLij. In the current version, we simplify operations by assuming that all jth lists PL.j have

the same list name and have the same parameters. So, we do not need communication to set up

associated links (in the scheduling pattern).

MLSListp MLSDerivedPL (list-name, base, func, inv

lb, ub, Indiv_Range);

The MLS_Derived_PL() procedure creates a derived PL which is based on a base

PL base with the priority translation function func, whose inverse function is inv. The

parameters listname, lb, ub, and Indiv Range are the same as those for base PLs. If

this PL is not part of a global scheduling subpattern, the inverse function inv will not be used.

Note that this operation for derived PLs has not yet been implemented.

A.1.3 Merging Physical Lists into Virtual Lists

In the current implementation, we provide the following functions to specify how to merge PLs

into VLs:

void MLS_Merge (listname, procx);

void MLS_MergeLocal (list_name);

123

Assume that the procedure MLSMerge() is executed on a processor P,. Then, this

procedure specifies that a PL named listname on processor Pj will be merged into VL, ac-

cording to the standard protocol, where j = procx. If i = z, we can use MLS_MergeLocal

instead. In any case, a system variable, called MLS_this-proc (= i), is provided to refer to

the current processor Pi.

void MLS_MergeAll(listname);

Assume that the procedure MLS_Merge_Al11 () is executed on a processor Pi. Then.

this procedure specifies that all the PLs named list-name (over the whole system) will be

merged into the VL on processor Pi. If every processor calls the same procedure, the system

can apply the advanced global protocol to these PLs.

void MLS_Merge_Dynamic(list_name, pset);

Assume that the procedure MLSMergeDynamic () is executed on a processor P,. This

procedure specifies that all the PLs named .is t name in a set S of processors will be merged

into the VL on processor P,, but the processor set S can be dynamically determined as follows:

Whenever processor Pi tries to schedule a task and needs to check the PLs named 1 i s tname.

processor Pi will execute the function pset () again to obtain the new set 5, and then find the

highest priority among PLs on the processors in S.

Let us consider the example of PDC-RR scheduling algorithm. The programmer can call

this function, as follows.

MLSMergeDynamic("GL", rrpset);

The function rr...pset (), provided by the programmer, returns the next processor in a round-

robin fashion. More specifically, when called, this function lets the variable s = (s mod p) + I

and returns s so that the system knows that the processor set includes processor P,. Since

the programmer also needs to specify the priority ranges of GL and LL such that the system

knows that each priority in LL is no less than that in GLs, the processor calls the function and

schedules a task from a GL only when there are no local tasks. Thus, the system will perform

as described in [34, 44, 821.

124

A.1.4 Priority Assignment

void MLSTaskPri (PL, T, pri);

void MLS_Change_Pri (PL, T, pri);

The procedure MLS_Task_Pri (), assumed to be called on processor P3 , inserts task

T into the PL PL on processor P. according to the priority pri. But, if the value of pri

is MLS_UNDEFPRI, the system will not insert the task into the PL. Note that the current

implementation does not support the feature of creating a task on another processor.

Similarly, the MLSChangePri () procedure, assumed to be called on processor P,,

changes the priority of task T to pri.

A.2 Examples

Using the above interface definitions, we will illustrate the code for the PDC- WK and PBFS-

GPQ scheduling algorithms, below.

125

following are in the file PBFS.h *

extern void PBFSSchd(); /* scheduler for PBFS t/

MLSList..p LT; /V scheduling list ./

/* interface for the prograxmmer writing BFS application code. */

#define DECLARENODE(T,c) MLSTask_Pri(LT,T,-c)

#define INITPBFS(g) MLSInit(PBFSSchd, g, INTKEY)

/... following are in the file PBFS.c /

void PBFSSchd () (

/* create a PL */

LT = MLSBasePL (LT", MLSINTKEY, MLS_MINPRI, MLS_MAX_PRI, NULL);

/* merge all PLs (named "LT) in the entire system */

MLS-MergeAll(*LT");

Figure A. 1: The code for the PBFS-GPQ scheduling algorithm.

. following are in the file PDC.h ***/

extern void PDC-Schd); /* scheduler for PDC */

MLS_List..p LL, GL; /* local and global scheduling lists */

/* interface for the programmer writing D&C application code. */

#define DECLARENODE(T,1) \

(MLS_TaskPri(T,LL,l); MLS_Task_Pri(T,GL,-l); }

#define INIT_PDC() MLSInit(PDCSchd, DCGRAIN, INTKEY)

/*** following are in the file PDC.c *

void PDCSchd () {

/V create two PLs */

LL = MLSBasePL ("LL", MLSINTKEY, 0, MLSMAXPRI, NULL);

GL = MLSBasePL ("GL, MLSINTKEY, MLSMINPRI, 0, NULL);

/* merge the local LL and all GLs */

MLSMergeLocal('LL");

MLSMerge_All("GL");

Figure A.2: The code for the PDC-WK scheduling algorithm.

126

Bibliography

[1] Abdelrahman, T. and Mudge, T.
Parallel B&B Algorithms on Hypercube Multiprocessors.
in: Proc. 3th Conf. on Hypercube Concurrent Computers and Applications.
1988, pp. 1492-1499.

[2] Adam, T., Chandy, K., and Dickson, J.
A Comparison of List Schedules for Parallel Processing Systems.
Communications of the ACM, vol. 17 (1974), pp. 685-690.

[3] Aho, A., Hopcroft, J., and Ullman, J.
The Design and Analysis of Computer Algorithms.
Addison and Wesley, 1974.

[4] Aid, S., Barnard, D., and Doran, R.
Design. Analysis and Implementation of a Parallel Tree Search Algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 4 (1982),

pp: 192-203.

[5] Anderson, S. and Chen, M.
Parallel Branch-and-Bound Algorithms on the Hypercube.
in: Hypercube Multiprocessors, edited by M. Heath.
SIAM Press, Philadelphia, 1987.

[6] Arnould, E. A., Bitz, F. J., Cooper, E. C., Kung, H. T., Sansom, R. D., and Steenkiste,
P.A.

The Design of Nectar: A Network Backplane for Heterogeneous Multicomputers.
in: Third Intern. Conf. on Architectural Support for Programming Languages

and Operating Systems (ASPLOS Ill).
Boston, Massachusetts, 1989.

[7] Bal, H.
The Shared Data-Object Model as a Paradigm for Programming Distributed Systems.
Vrije Universiteit, Amsterdam, Netherlands, 1989.

[8] Balas, E. and Ho, A.
Set Covering Algorithms Using Cutting Planes, Heuristics, and Subgradient

Optimization: a Computational Study.
Mathematical Programming, vol. 12 (1980), pp. 37-60.

[9] Balas, E. and Padberg, M.

127

Set Partitioning: A Survey.
SIAM Review, vol. 18 (1976). pp. 710-760.

[10] Balinski, M. and Quandt, R.
On an Integer Program for a Delivery Problem.
Operations Research, vol. 12 (1964), pp. 300-304.

[111 Baudet, G.
The Design and Analysis of Algorithms for Asynchronous Multiprocessors.
School of Computer Science, Carnegie-Mellon University, 1978.

[12] Beguelin, A., Dongarra, J., Geist, G., Manchek, R., and Sunderam, V.
Graphical Development Tools for Network-Based Concurrent Supercomputing.
in: Proceedings of Supercomputing '91, IEEE.
Albequerque, 1991, pp. 435-444.

[13] Bershad, B., Ching, D., Lazowska, E., Sanislo, J., and Schwartz, M.
A Remote Procedure Call Facility for Interconnecting Heterogeneous Computer

Systems.
IEEE Transaction on Software Engineering, vol. 13 (1987), pp. 880-894.

[14] Birman, K. and Joseph, T.
Exploiting Replication in Distributed Systems.
in: Distributed Systems, edited by S. Mullender.
Addison-Wesley, 1989, pp. 319-368.

[151 Birman, K., Joseph, T., Kane, K., and Schmuch, F.
ISIS - A Distributed Programming Environment User s Guide and Reference Manual.
Department of Computer Science, Cornell University, March 1988.

[16] Blelloch, G., Chatterjee, S., Hardwick, J., Sipelstein, J., and Zagha, M.
Implementation of a Portable Nested Data-Parallel Language.
in: Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming.
1993.

[17] Blum, M., Floyd, R., Pratt, V., Rivest, R., and Tarjan, R.
7i7me Bounds for Selection.
Journal of Computer and System Sciences, vol. 7 (1973), pp. 448-46 I.

[18] Borkar, S., Cohn, R., Cox, G., Gleason, S., Gross, T., Kung, H. T., Lam, M., Moore, B.,
Peterson, C., Pieper, J., Rankin, L., Tseng, P. S., Sutton, J., Urbanski, J., and Webb,
J.

iWarp: An Integrated Solution to High-Speed Parallel Computing.
in: Proceedings of Supercomputing '88, IEEE Computer Society and ACM

SIGARCH.
Orlando, Florida, 1988, pp. 330-339.

(19] Bruegge, B.
BEE: A Basis for Distributed Event Environments (Reference Manual).
no. CMU-CS-90-180, Carnegie-Mellon University, November 1990.

128

[20] Bryant, R., Beatty, D., Brace, K., Cho, K., and Sheffier, T.
COSMOS: A Compiled Simulator for MOS Circuits.
in: Proceedings of the Design Automation Conference, ACM/IEEE.
1987, pp. 9-16.

[211 Campbell, M.
Algorithms for the Parallel Search of Game Trees.
no. Technique Report 81-8, Computer Science Department, University of Alberta,

Canada, August 1981.

[22] Charnes, A. and Miller, M.
A Model for the Optimal Programming of Railway Freight Train Movements.
Management Science, vol. 3 (1956), pp. 74-92.

[23] Choi, Y.
Vertex-Based Boundary Representation of Non-Manifold Geometric Models.
Engineering Design Research Center, Carnegie Mellon University, 1989.

[24] Chrisochoides, N., Droegemeier, K., Fox, G., Mills, K., and Xue, M.
A Methodology for Developing High Performance Computing Models: Storm-Scale

Weather Prediction.
in: High Performance Computing Symposium 1993 Grand Challenges in

Computer Simulation.
1993, pp. 82-89.

[251 Chrisochoides, N., Houstis, E., and Rice, J.
Mapping Algorithms and Software Environment for Data Parallel PDE Iterative

Solvers.
submitted to the special issue of the Journal of Parallel and Distributed Computing on

Data-Parallel Algorithms and Programming, 1993.

[26] Cohn, R.
Source-Level Debugging of Automatically Parallelized Programs.
School of Computer Science, Carnegie-Mellon University, October 1992.

[27] Cooper, E., Steenkiste, P., Sansom, R., and Zill, B.
Protocol Implementation on the Nectar Communication Processor.
in: Proceedings of the SIGCOMM '90 Symposium on Communications

Architectures and Protocols, ACM.
Philadelphia, 1990, pp. 135-143.

[28] Cormen, T., Leiserson, C., and Rivest, R.
Introduction to Algorithms.
MIT Press, Cambridge, MA, 1989.

[29] Dantzig, G., Fulkerson, D., and Johnson, S.
Solution of a Large-Scale Traveling Salesman Problem.
Operations Research, vol. 2 (1954), p. 393.

[30] Day, R.
On Optimal Extracting from a Multiple File Data Storage System: An Application of

Integer Programming.

129

Operations Research, vol. 13 (1965), pp. 482-494.

[31] Fahringer, T., Gubitoso, M., Kung, H., Prinz, F., and Wu, 1.-C.
Parallelizing Noodles on Nectar.
internal document, CMU, 1989.

[321 Feldmann, R., Monien, B., Mysliwietz, P., and Vornberger, 0.
Distributed Game Tree Search.
in: Parallel Algorithms for Machine Intelligence, edited by V. Kumar, P.

Gopalakrishnan, and L. Kanal.
Springer-Verlag, 1990, pp. 66-101.

[33] Ferguson, C. and Korf, R.
Distributed Tree Search and its Application to Alpha-Beta Pruning.
in: Proceedings of the 7th National Conference on Artificial Intelligence (AAAI

1988).
Saint Paul, 1988, pp. 128-132.

[341 Finkel, R. and Manber, U.
DIB - a Distributed Implementation of Backtracking.
ACM Transactions on Programming Languages and Systems, vol. 9 (1987),

pp. 235-256.

[35] Fisher, M. and Kedia, P.
Optimal Solution of Set Covering/Partitioning Problems Using Dual Heuristics.
Management Science, vol. 36 (1990), pp. 674-688.

[36] Garfinkel, R. and Nemhauser, G.
Optimal Political Districting by Implicit Enumeration.
Management Science, vol. 16 (1970), pp. 495-508.

[37] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V.
PVM 3 User's Guide and Reference Manual.
no. ORNLRTM-12187, Oak Ridge National Laboratory, May 1993.

[38] Guibas, L., McCreight, E., Plass, M., and Roberts, J.
A New Representation for Linear Lists.
in: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing.
1977, pp. 49-60.

[391 Hamey, L., Webb, J., and Wu, I.-C.
An Architecture Independent Programming Language for Low-Level Vision.
Computer Vision, Graphics, and Image Processing, vol. 48 (1989), pp. 246-64.

[40] Haralick, R. and Elliott, G.
Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial intelligence, vol. 14 (1980), pp. 263-313.

[411 Harche, F and Thompson, G.
The Column Subtraction Algorithm: An Exact Method for Solving Weighted Set

Covering, Packing and Partitioning Problems.
To appear in Computers and Operations Research, 1993.

130

[421 Hoare, C.
Algorithm 63 (Partition) and Algorithm 65 (Find).
Communications of the ACM, vol. 4 (1961), pp. 321-322.

(43] Hoare, C.
Quicksort.
Computer Journal, vol. 5 (1962), pp. 10-15.

(441 Holliman, N.
Wsualizing Solid Models: An Exercise in Parallel Programming.
Leeds University, September 1990.

[45] Hsu, F.-H.
Large Scale Parallelization of Alpha-Beta Search: An Algorithmic and Architectural

Study with Computer Chess.
School of Computer Science, Carnegie-Mellon University, 1990.

[46] Huang, S.-R. and Davis, L. S.
Parallel Interactive A* Search: An Admissible Distributed Heuristic Search Algorithm.
in: 11th International Joint Conference on Artificial Intelligence.
Detroit, 1989, pp. 23-29.

[47] Huddleston, S. and Mehlhorn, K.
A New Data Structure for Representing Sorted List.
Acta Informatica, vol. 17 (1982), pp. 157-184.

[48] Hummel, S., Schonberg, E., and Flynn, L.
Factoring: A Method for Scheduling Parallel Loops.
Communications of the ACM, vol. 35 (1992), pp. 90-101.

[49] Ikudome, K., Fox, G., Kolawa, A., and Flower, J.
An Automatic and Symbolic Parallelization System for Distributed Memory Parallel

Computers.
in: Proceedings of the Fifth Distributed Memory Computing Conference, IEEE.
1990, pp. 1105-1114.

[50] iPSC/2 C Programmer's Reference Manual.
Intel, 1988.

[51] Jayasimha, D.
Communication and Synchronization in Parallel Computation.
Department of Computer Science, University of Illinois at Urbana-Champaign,

September 1988.

[52] Jayasimha, D. and Loui, M.
The Communication Complexity of Parallel Algorithms.
no. CSRD 629, University of Illinois at Urbana-Champaign, 1986.

[53] Johnson, C.
Numerical Solutions of Partial Differential Equations by the Finite Element

Method.
Cambridge University Press, 1987.

131

[54] Jones, M., Rashid, R., and Thompson, M.
Matchmaker: An Interface Specification Language for Distributed Processing.
in: Conference Record of the 12th Annual ACM Conference on Principles of

Programming Languages.
1985, pp. 225-235.

[55] Karmarkar, N.
A New Polynomial-7Ime Algorithm for Linear Programming.
Combinatorlca, vol. 4 (1984), pp. 373-395.

[561 Karp, A.
Programming for Parallelism.
IEEE Computer, vol. 20 (1987), pp. 43-57.

[571 Karp, R. and Zhang, Y.
A Randomized Parallel Branch-and-Bound Procedure.
in: Proceedings of the 20th Annual ACM Symposium on Theory of Computing.
Chicago, IL, 1988, pp. 290-300.

[58] Knuth, D. E. and Moore, R. W.
An Analysis of Alpha-Beta Pruning..
Artificial Intelligence, vol. 6 (1975), pp. 293-326.

[59] Kohler, W.
A Preliminary Evaluation of the Critical Path Method for Scheduling Tasks on

Multiprocessor Systems.
IEEE Transaction on Computers, vol. 24 (1975), pp. 1235-1238.

[60] Kumar, V., Ramesh, K., and Rao, V. N.
Parallel Best-First Search of State-Space Graphs: A Summary of Results.
in: Proceedings of the 1988 National Conference on Artificial Intelligence.
1988, pp. 122-127.

[61] Kung, H.
Heterogeneous Multicomputers.
in: Carnegie Mellon Computer Science: A 25-Year Commemorative, edited by

R. F. Rashid.
Addison-Wesley, 1990, pp. 235-251.

[62] Kung, H., Steenkiste, P., Gubitoso, M., and Khaira, M.
Parallelizing a New Class of Large Applications over High-Speed Networks.
in: Third ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, ACM.
1991, pp. 167-177.

[63] Lai, T. and Sahni, S.
Anomalies in Parallel Branch-and-Bound Algorithms.
Communications of the ACM, 1984, pp. 594-602.

[64] Lee, K.-F. and Mahajan, S.
Bill: a Table-Based, Knowledge-Intensive Othello Program.

132

no. CMU-CS-86-141, School of Computer Science, Carnegie-Mellon University, April
1986.

[65] Leffler, S., McKusick, M., Karels, M., and Quarterman, J.
The Design and Implementation of the 4.3BSD UNIX Operating System.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

[66] Li, G.-J. and Wah, B.
Coping with Anomalies in Parallel Branch-and-Bound Algorithms.
IEEE Transaction on Computers, June 1986, pp. 568-573.

(67] Lin, F. and Keller, R.
The Gradient Model Load Balancing Method.
IEEE Transaction on Software Engineering, vol. SE- 13 (1987), pp. 32-38.

[681 Maier, D. and Salveter, C.
Hysterical B-trees.
Information Processing Letters, vol. 12 (1981), pp. 199-202.

[69] Marsland, T. and Campbell, M.
Parallel Search of Strongly Ordered Game trees.
Computing Surveys, vol. 14 (1982), pp. 533-551.

[701 Nishikawa, H.
A Practical Load Balancing Scheme Embedded in Aroma.
private manuscript, 1992.

L7 1] Nishikawa, H. and Steenkiste, P.

Aroma: Language Support for Distributed Objects.
in: International Parallel Processing Symposium.
Los Angeles, 1992, pp. 686-690.

[721 Ortega, J. and Voigt, R.
Solution of Partial Differential Equations on Vector and Parallel Computers.
SIAM Review, vol. 27 (1985), pp. 149-240.

[73] Papadimitriou, C. and Steiglitz, K.
Combinatorial Optimization: Algorithms and Complexity.
Englewood Cliffs, NJ, 1982.

[741 Papadimitriou, C. and Ullman, J.
A Communication-lime Tradeoff.
SIAM Journal of Computing, vol. 16 (1987), pp. 639-646.

[75] Pearl, J.
Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

[76] Pekny, J. and Miller, D.
A Parallel Branch and Bound Algorithm for Solving Large Asymmetric Traveling

Salesman Problems.
no. EDRC 05-27-88, Engineering Design Research Center, Carnegie Mellon

University, May 1988.

133

[77] Plaxton, C.
Efficient Computation on Sparse Interconnection Networks.
Dept of CS, Stanford University, September 1989.

[78] Polychronopoulos, C. and Kuck, D.
Guided Self-Scheduling: A Practical Scheduling Scheme for parallel computers.
IEEE Transaction on Computers, vol. 36 (1987), pp. 1425-1439.

[791 Preparata, F and Shamos, M.
Computational Geometry: an Introduction.
Springer-Verlag, New York. 1985.

(801 Printz, H.
Automatic Mapping of Large Signal Processing Systems to a Parallel Machine.
School of Computer Science, Carnegie-Mellon University, May 1991.

[811 Quinn, M.
Implementing Best-First Branch-and-Bound Algorithms on Hypercube Multicomputers.
in: Hypercube Multiprocessors, edited by M. Heath.
SIAM Press, Philadelphia, 1987.

[82] Rao, V. N. and Kumar, V.
Parallel Depth-First Search, Part I: Implementation.
International Journal of Parallel Programming, vol. 16 (1987), pp. 479-499.

[83] Revelle, C., Marks, D., and Liebman, J.
An Analysis of Private and Public Sector Location Models.
Management Science, vol. 16 (1970), pp. 692-707.

[84] Root, J.
An Application of Symbolic Logic to Selection Problem.
Operations Research, vol. 12 (1964), pp. 519-526.

[85] Saletore, V. and Kale, L.
Consistent Linear Speedups to a First Solution i, Parallel State-Space Search.
in: Proceedings of the 8th National Conference on Artificial Intelligence (AAAI

1990).
Boston, 1990, pp. 227-233.

[86] Samet, H.
Applications of Spatial Data Structures: Computer Graphics, Image processing,

and GIS.
Addison-Wesley, Reading, MA., 1990.

[87] Schaeffer, J.
Distributed Game-Tree Searching.
Journal of Parallel and Distributed Computing, vol. 6 (1989), pp. 90-114.

[881 Sethi, A. and Thompson, G.
The Pivot and Probe Algorithm for Solving a Linear Program.
Mathematical Programming, vol. 29 (1984), pp. 219-233.

134

[89] Shu, W. and Kale, L. V.
A Dynamic Scheduling Strategy for Chare-Kernel System.
in: Proceedings of Supercomputing '89.
New York, NY, 1989, pp. 389-398.

[90] Sinha, A. and Kale, L.
A Load Balancing Strategy for Prioritized Execution of Tasks.
To appear in International Parallel Processing Symposium, 1993.

[91] Slate, D. and Atkin, L. R.
Chess 4.5 - The Northwestern University Chess Program.
in: Chess Skill in Man and Machine.
Springer-Verlag, 1977, pp. 82-118.

[92] Sleator, D. and Tarjan, R.
Self-Adjusting Binary Search Trees.
Journal of the ACM, vol. 32 (1985), pp. 652-686.

[93] Sollins, K.
Copying Structured Objects in a Distributed System.
Computer Networks, vol. 5 (1981). pp. 351-359.

[94] Steenkiste, P.
Nectarine - A Nectar Interface.

internal document, 1990.

[95] Steenkiste, P.
A Symmetrical Communication Interface for Distributed-Memory Computers.
in: Proceedings of the Sixth Distributed Memory Computing Conference, IEEE.
Portland, 1991, pp. 262-265.

[96] Sun Microsystems Inc.
Remote Procedure Call Protocol Specification.
Sun Microsystems Inc., February 1986.

[97] Tarjan, R.
Sequential Access in Splay Trees Takes Linear Time.
Combinatorica, vol. 5 (1985), pp. 367-378.

[98] Tarjan, R. and Van Wyk, C.
An O(n log log n)-lime Algorithm for Triangulating a Simple Polygon.
SIAM Journal of Cemputing, vol. 17 (1988), pp. 143-178.

[99] Thinking Machines Corporation.
The Connection Machine CM-5 Technical Summary.
Thinking Machines Corporation, January 1992.

[100] Tseng, P. S.
A Parallelizing Compiler for Distributed Memory Parallel Compiler.
Carnegie-Mellon University, May 1989.

[101] Wah, B. W. and Ma, Y.

135

Manip - A Multicomputer Architecture for Solving Combinatorial Ertremum-Search
Problems.

IEEE Transaction on Computers, vol. 33 (1984), pp. 377-390.

[102] Weihl, W.
Remote Procedure Call.
in: Distributed Systems, edited by S. Mullender.
Addison-Wesley, 1989, pp. 65-86.

[103] Wu, I.-C.
Dual-Priority Task Scheduling: A New Parallel Programming Model for Tree Search

Problems.
private manuscript (thesis proposal at CMU), 1991.

[104] Wu, I.-C.
Efficient Parallel Divide-and-Conquer for a Class of Interconnection Topologies.
in: the Second Annual International Symposium on Algorithms.
Taipei, 1991.

[105] Wu, L.-C. and Kung, H.
Communication Complexity for Parallel Divide-and-Conquer.
in: 1991 Symposium on Foundations of Computer Science.
San Juan, 1991, pp. 151-162.

[106] Wu, I.-C., Thompson, G., and Harche, F.
private communication, 1993.

[107] Wu, M.-Y. and Shu, W.
Scatter Scheduling for Problems with Unpredictable Structures.
in: Proceedings of the Sixth Distributed Memory Computing Conference.
Portland, 1991, pp. 137-143.

[108] Zhang, Y.
Parallel Algorithms for Combinatorial Search Problems.
U.C. Berkeley, November 1989.

136

